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Time Delays Improve
Performance of Certain Neural
Networks
Both the predictive power and thememory storage capability of an
artificial neural network called a reservoir computer increase when time
delays are added into how the network processes signals, according to a
newmodel.

By Sarah Marzen

A reservoir computer—a type of artificial neural
network—can use information about a system’s past to
predict the system’s future. Reservoir computers are far

easier to train than their more general counterpart, recurrent
neural networks. However, researchers have yet to develop a
way to determine the optimal reservoir-computer construction
for memorizing and forecasting the behavior a given system.
Recently, Seyedkamyar Tavakoli and André Longtin of the
University of Ottawa, Canada, took a step toward solving that
problem by demonstrating a way to enhance the memory and
prediction capabilities of a reservoir computer [1]. Their

Figure 1: Researchers tested an improved reservoir computer’s
ability to memorize time-series data from a Lorenz attractor such
as that shown in orange.
Credit: Steve Young/stock.adobe.com

demonstration could, for example, allow researchers to make a
chatbot or virtual assistant, such as ChatGPT, using a reservoir
computer, a possibility that so far has been largely unexplored.

For those studying time-series-forecasting methods—those that
can predict the future outcomes of complex systems using
historical time-stamped data—the recurrent neural network is
king [2]. Recurrent neural networks contain a “hidden state”
that stores information about features of the system being
modeled. The information in the hidden state is updated every
time the network gains new information about the system and
is then fed into an algorithm that is used to predict what will
happen next to the system.

Both the hidden-state-update process and the prediction
process are optimized by training algorithms incorporated into
the recurrent neural network. But current training methods
tend to lose key information about the system of interest, which
degrades the neural network’s performance [3].

To get around the information-loss problem, researchers
developed the reservoir computer, which is essentially a
recurrent neural network in which the hidden-state-update
process stays the same. Training still happens but only on how
the networkmakes predictions. As such, when compared with a
commensurate recurrent neural network, a reservoir computer
usually makes less accurate predictions. The lack of
hidden-state-update training also impacts the comparative size
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of the reservoir computer. Without such training capabilities,
the reservoir computer must be able to store all the information
it may need to make a prediction. That means that to solve a
given problem, the required reservoir computer will typically be
larger than the needed recurrent neural network, making it
more resource intensive to construct. Researchers have shown
that they can reduce a given reservoir computer’s size by
adding time delays into the method by which it processes
signals. But how to choose the optimal time delays has been an
open question.

To address this question, Tavakoli and Longtin considered a
theoretical reservoir computer that operates using
optoelectronic oscillators—oscillators in which electronic and
optical signals interact in feedback loops. The final signal
produced by an oscillator is inherently cyclic, with a period
known as the clock cycle. After leaving the oscillator, the signal
passes into a “delay loop,” which could, for example, be an
optical fiber. As the signal travels through the loop, it interacts
with nodes of the neural network that delay some fraction of
the signal by a certain length of time.

To study the impact of these time delays, Tavakoli and Longtin
adjusted the spacing between time delays and the number of
time delays. They then tested the reservoir computer’s ability to
memorize time-series data from three different systems—a
Lorenz attractor (Fig. 1), a Mackey-Glass model, and a NARMA10
task—and to make predictions about the future behavior of
those systems.

The results of the tests reveal that adding in time delays
improves both the reservoir computer’s memory capacity and
its predictive capabilities, with each additional delay further
improving performance. But this enhancement occurs only
under certain conditions, a result in line with previous studies
[4]. For example, when the length of a single time delay
matches the clock cycle, Tavakoli and Longtin show that the
reservoir computer will not retain all the input data and so has a
lower memory capacity andmakes less accurate predictions
than it otherwise would.

Interestingly, Tavakoli and Longtin found that a reservoir
computer with a higher memory capacity has a lower prediction
error, and vice versa. Previous studies, including my own, have
shown that this correlation is far from inevitable—a reservoir

computer can have an infinite memory and no predictive
capabilities, for example [5].

Together, these findings provide both a qualitative and a
quantitative starting point for constructing an optimal reservoir
computer. They also suggest that incorporating time delays
could offer advantages to living neural networks (such as those
found in human and animal brains). Such a finding would be
tantalizing, as time delays are known to decrease performance
in living systems [6]. For example, for a baseball player facing
an oncoming ball, a longer time delay between perception and
action (which is learned from experience) will decrease the
likelihood they hit a home run. Are there instead cases in which
time delays increase an organism’s ability to perform some
task? Has evolution shaped our brains, which could perhaps be
thought of as a collection of reservoir computers, so that the
time delay between one neuron sending a signal and a second
receiving it is exactly the right length for understanding the
visual and audio that constantly impinge upon our eyes and
ears? Does adding time delays impact the number of neurons
the brain needs to operate correctly? Further work is needed to
answer these questions, but such work could lead to a new
understanding of how biological organism’s function.
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