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Treating Epidemics as Feedback

Loops

A new model of epidemics describes infections as part of a feedback

loop—an approach that might one day help optimize interventions such

as social distancing and lockdowns.

By Andrea Parlangeli

uring the worst days of the COVID-19 pandemic,

many of us became accustomed to news reports on the

reproduction number R, which is the average number of
cases arising from a single infected case. If we were told that R

was much greater than 1, that meant the number of infections
was growing rapidly, and interventions (such as social
distancing and lockdowns) were necessary. But if R was near to
1, then the disease was deemed to be under control and some
relaxation of restrictions could be warranted. New
mathematical modeling by Kris Parag from Imperial College
London shows limitations to using R or a related growth rate

During an epidemic, interventions such as face masks and
quarantines can help limit the spread of a disease. A new model
helps to assess how well these measures are working at controlling
the epidemic.
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parameter for assessing the “controllability” of an epidemic [1].
As an alternative strategy, Parag suggests a framework based on
treating an epidemic as a positive feedback loop. The model
produces two new controllability parameters that describe how
far a disease outbreak is from a stable condition, which is one
with feedback that doesn’t lead to growth.

Parag’s starting point is the classical mathematical description
of how an epidemic evolves in time in terms of the reproduction
number R. This approach is called the renewal model and has
been widely used for infectious diseases such as COVID-19,
SARS, influenza, Ebola, and measles. In this model, new
infections are determined by past infections through a
mathematical function called the generation-time distribution,
which describes how long it takes for someone to infect
someone else. Parag departs from this traditional approach by
using a kind of Fourier transform, called a Laplace transform, to
convert the generation-time distribution into periodic functions
that define the number of the infections. The Laplace transform
is commonly adopted in control theory, a field of engineering
that deals with the control of machines and other dynamical
systems by treating them as feedback loops.

The first outcome of applying the Laplace transform to epidemic
systems is that it defines a so-called transfer function that maps
input cases (such as infected travelers) onto output infections
by means of a closed feedback loop. Control measures (such as
quarantines and mask requirements) aim to disrupt this loop by
acting as a kind of “friction” force. The framework yields two
new parameters that naturally describe the controllability of the
system: the gain margin and the delay margin. The gain margin
quantifies how much infections must be scaled by interventions
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to stabilize the epidemic (where stability is defined by R=1).
The delay margin is related to how long one can wait to
implement an intervention. If, for example, the gain margin is 2
and the delay margin is 7 days, then the epidemic is stable
provided that the number of infections doesn’t double and that
control measures are applied within a week. In general,
outbreaks with smaller margins necessitate more control effort.

Parag shows that his method has the advantage of providing
reliable predictions in cases where the traditional indicator R
fails. Indeed, in real epidemics, many cases often go
undetected, as some infected individuals never exhibit
observable symptoms and are therefore not subjected to
targeted measures such as quarantines. “The controllability of
an epidemic is strongly influenced by the untargeted group,
which is not controlled but still able to spread the disease,”
Parag says. The effect of this invisible group has been
considered before, but Parag’s approach better defines the
threshold in the size of the group beyond which targeted
controls will fail. “Control measures only work if the untargeted
portion is not too detrimental to the whole system,” he says. If
the situation gets out of control, more drastic measures such as
a lockdown must be taken.

Like every mathematical model, Parag’s model is based on
assumptions and is therefore limited in the types of situations it
can be applied to. First of all, it is based on linear equations,
which means that it is only valid during the early period of an
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epidemic, when growth is exponential and there are not yet
saturation effects coming from part of the population being
immunized from previous infections. Secondly, the model
works only for interventions that are implemented
continuously in time (such as quarantines) but not for those
that turn on suddenly (such as lockdowns). Finally, the model is
deterministic and thus does not include random effects.

Despite these limitations, Alfio Quarteroni, an applied
mathematician from the Swiss Federal Institute of Technology
in Lausanne (EPFL) and the Polytechnic University of Milan,
thinks that this work is a core contribution to the
still-developing field of epidemic controllability. “It is a unified
framework for epidemics based on a positive feedback loop
approach, which can be crucial during outbreaks to evaluate
different control measures,” he says. The approach offers two
new metrics, the gain and the delay margins, that, in principle,
can outperform the standard controllability approach,
Quarteroni says. “A validation of the results in a real case
epidemic scenario would be very welcome.”

Andrea Parlangeli is a science writer based in Milan, Italy. He is the
author of A Pure Soul: Ennio De Giorgi, A Mathematical
Genius (Springer, 2019).
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