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Harnessing Machine Learning to
Guide Scientific Understanding
A clever use of machine learning guides researchers to amissing term
that’s needed to accurately describe the dynamics of a complex fluid
system.

By SamDillavou

P hysical theories andmachine-learning (ML) models are
both judged on their ability to predict results in unseen
scenarios. However, the bar for the former is much

higher. To become accepted knowledge, a theory must conform
to known physical laws and—crucially—be interpretable. An
interpretable theory is capable of explaining why phenomena
occur rather than simply predicting their form. Having such an
interpretation can inform the scope of a new theory, allowing it
to be applied in new contexts, while also connecting it to and
incorporating prior knowledge. To date, researchers have
largely struggled to get MLmodels (or any automated
optimization process) to produce new theories that meet these
standards. Jonathan Colen and Vincenzo Vitelli of the
University of Chicago and their colleagues now show success at
harnessing ML not as a stand-in for a researcher but rather as a
guide to aid building a model of a complex system [1]. In a
demonstration of their method, the researchers have identified
a previously overlooked term that leads to a more complete
understanding of dynamics in a fluidic system.

To build newmodels, physicists often observe phenomena
(Fig. 1a) in a controlled experiment (Fig. 1b) and attempt to
relate parameters of the system to each other with equations.
Then, through a combination of intuition and trial and error,
they modify the experiment, the theory, or both until they find a
set of equations that describes the data. Prior knowledge—for
instance, that the system should have no history dependence,
that temperature is uniform, or that gravity can be
ignored—vastly shrinks the space of possible solutions and of
required experimental exploration. This severe narrowing of
scope is usually necessary for us humans, as we find it
extremely difficult to grapple with a problem in more than a

handful of dimensions.

In contrast, ML models find more accurate andmore
generalizable solutions when given a (very) high-dimensional
space to explore [2]. These models optimize enormous
numbers of adjustable parameters until their predictions match
the data. Unfortunately, the solutions found by generic ML
models are often far too complicated andmethod dependent to
extract a “why” [3]. Researchers applying suchmethods are
therefore often limited to the unsatisfying claim that their data
contains predictive information [4]. But what that information
is and why it is predictive remains hidden in a black box of many
messy variables (Fig. 1c). Techniques to identify where in the
data that predictive information resides are emerging [5], but
they are rarely used in the scientific process. An alternative to
complex MLmodels is to use algorithms that search libraries of
possible equations to describe a system directly [6]. However,
this tactic scales poorly with system complexity, making it
difficult to use on phenomena of modern interest. To
incorporate ML into the general discovery process requires a
balance: The method should have sufficient free rein to unlock
its potential but also a restricted terrain on which the results
will be interpretable.

Colen, Vitelli, and their colleagues now do just that using a
sequence of ML algorithms [1]. Their work focuses on a
paradigmatic problem in hydrodynamics: a single-file queue of
water droplets in a microfluidic channel, suspended in a second
fluid that causes them to interact and form a propagating shock
front. This system has been previously modeled by a partial
differential equation that describes the changing fluid density.
But the equation, called Burgers’ equation, fails to capture key
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Figure 1: There are many approaches for understanding a physical
phenomenon, where cause α creates an effect β. (a) Uncontrolled
observations prompt a loose connection between cause and effect.
(b) A well-designed experiment combined with known physical
laws leads to a simple cause–effect relationship, but designing
such an experiment for complex phenomena can be extremely
challenging. (c) A generic machine-learning (ML) model (neural
network) optimizes many parameters to fit even complex data, but
discerning the meaning of this black box of (for example, millions
of) parameters is notoriously difficult. (d) MLmodels that include
some restrictions or simpler operations (white) make it possible to
identify certain aspects of the causal chain of complex phenomena
to guide model building or further experiments.
Credit: S. Dillavou/University of Pennsylvania; APS/Alan
Stonebraker

aspects of the system’s dynamics. To uncover the missing
physics, the researchers first train an MLmodel to predict the
time evolution of the 1D droplet density field ρ—in other words,
they task their algorithm to find a function M that maps the
initial density ρ0 forward in time: M[t, ρ0] = ρ(t).

To make their model interpretable, the researchers construct it
from three successive operations. First, a neural network N
transforms the density into a new 1D field, which they call
ϕ0 = N[ρ0]. While this “latent” field does not have an easily
interpretable physical meaning, it only contains information
about the initial density field. Second, this field is fed into a

function, called F, that steps it forward in time—in other words,
F(ϕ0, t) = ϕ(t). The researchers restrict the form of F to a set
of linear operations. Finally, the field is transformed back into
density by another neural network, essentially an inverse of the
first step. (Mathematically, the entire process can be described
as M[t, ρ0] = N−1[F(t, N[ρ0])] = ρ(t) and is drawn
schematically in Fig. 1d, top). By simultaneously optimizing all
three steps to match experimental data, the researchers found
better predictions than those made by Burgers’ equation.

The researchers then utilized an algorithm that finds simplified
analytical approximations of numerical functions [6]. This step
would fail for a typical neural network trained on the
experimental data (Fig. 1c). But, notably, it produces a five-term
linear partial differential equation as a good stand-in for F.
Despite this equation operating on the (uninterpretable) latent
variable ϕ0, F’s role as a time propagator makes each term’s
meaning intelligible at a high level. Specifically, the researchers
identify one of the differential terms as connected to
dispersion—a frequency dependence in the wave speed of the
fluid. Such a dispersive term is not present in Burgers’ equation,
but the team found that its addition produces more accurate
descriptions of the shock-front dynamics that arise in the
droplet density field. Finally, the team develops a model of
interacting droplets and finds that this added dispersive term is
a direct consequence of nonreciprocal hydrodynamic
interactions.

This work provides an exciting use of ML as a compass during
scientific exploration, which requires a fundamentally different
approach than standard ML practice, where models are judged
primarily by their prediction accuracy. However, for scientific
exploration the “best” models are the ones that lead to physical
insight (the “why”) but may not be the most accurate. In fact,
the team found that adding the key dispersive term actually
raised the predictive error slightly compared to other MLmodels
applied to the same problem; however, it clearly captured
missing physics occurring near the shock front. Rather than
lower error, it was closing the loop with a continuummodel and
identifying the source of this dispersive term that allowed
Colen, Vitelli, and colleagues to solidify their conclusions. This
workflow dovetails with recent work here at the University of
Pennsylvania using ML as an experimental guide [7], wherein
the simplest and “weakest” (least-predictive) models trained to
predict clogging in granular materials gave the most insight,
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prompting experiments that solidified their interpretation.

Increases in computational power have massively accelerated
analysis of scientific data, yet our exploration of that data often
remains entirely human driven. As physicists study increasingly
complex emergent phenomena, the dimensions of potential
physical models and therefore the complexity of required
experimental exploration grows rapidly. While standard
analysis tools allow us to identify robust trends, it may not be
feasible to hunt down highly nonlinear, history-dependent, and
multiscale effects in (necessarily) messy data without a guide
capable of ingesting 100 dimensions at once. To study such
phenomena, fluency with both the subject matter and ML tools
may prove an invaluable combination, both as an experimental
guide and a theoretical one.

Sam Dillavou: Department of Physics and Astronomy, University of
Pennsylvania, Philadelphia, PA, US
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