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Deciphering the Blueprint of the
Fruit Fly’s Brain
Researchers leverage synapse-level maps of the fruit fly brain to examine
how neuronal connection probabilities vary with distance, offering
insights into how these neuronal networks may optimize function within
spatial constraints.

By Suman Kulkarni and Dani S. Bassett

B rains perform astounding feats of computation and
communication, all while balancing tight physical and
biological constraints. Take, for example, a relatively

simple organism like the fruit fly. The brain of a fruit fly is no
larger than a poppy seed, containing some 130,000 neurons and
a few tens of millions of synapses. Despite its tiny size, this
neuronal network supports complex functions, from navigating
diverse environments in search of food to engaging in courtship
rituals—and occasionally annoying humans. How are these
neuronal networks able to operate so well within the inherent
spatial constraints? Understanding the organization and the
workings of these and other neural systems is a key endeavor,
spanning decades of research across neuroscience and physics.
A recent study by Xin-Ya Zhang at Tongji University, China, and
colleagues takes a step in this direction, reporting a scaling
relationship that links neuronal connection probabilities to
physical distance in the fruit fly brain [1]. This observation,
made across different developmental stages of the fruit fly,
could explain how these neuronal networks achieve optimal
function within the brain’s inherent geometric constraints.

Researchers have long studied the brain’s macroscale structure
and dynamics, but only recently have advances in electron
microscopy and image reconstruction made it possible to build
large-scale datasets of the brain’s cellular structure across
species. These large-scale experiments open up new
opportunities to uncover underlying principles of
brain-network organization and function using quantitative
tools frommathematics and physics [2]. Since form often
reflects function in biology, these maps of neurons and their

synapses, called connectomes, may hold valuable clues about
how the brain operates. Connectomes are inherently spatial [3],
and the organization of these neuronal networks is shaped by
physical constraints within the brain.

Zhang and colleagues examined brain-wide,
synaptic-resolution connectomes of the fruit fly at both larval
and adult stages (Fig. 1) [4]. They investigated how the
probability of two neurons being connected by at least one
synapse varies with the distance between their cell bodies. The
team reports that, across both developmental stages, this
connection probability between pairs of neurons falls off with
distance according to a power law. This finding is consistent
with studies of heavy-tailed distributions in coarser-resolution
data from other animals [5], but the fruit fly connectomes
exhibit greater numbers of long-range connections.

What could be the significance of such a distribution? The
researchers put forth two hypotheses. First, this distribution
maymaximize the information communicated under a cost
constraint. Second, this distribution may enable the brain to
strike an optimal balance between segregation (the localization
of coordinated neural activity in specific regions) and
integration (the distribution of neural activity throughout the
brain).

Since the connectome forms the scaffold for communication of
information between neurons, its geometry and topology
directly influence the information transmitted [6]. To quantify
communication, the researchers compute the average
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Figure 1: (Top) A reconstruction of an adult fruit fly brain
containing approximately 130,000 neurons and 53million
synapses. (Bottom) A portion of the connectome corresponding to
the auditory circuit.
Credit: (Top) Adapted from S. Dorkenwald et al. [4a] (CC-BY-ND
4.0); (Bottom) FlyWire and S. Dorkenwald et al., Nat. Methods 19,
119 (2022)

information entropy, which reflects the diversity of information
a neuron can send or receive. To maximize this entropy, it is
preferable to have long-distance links that can obtain
information from new parts of the network [7]. For neurons, this
could mean receiving inputs from diverse brain regions,
including different sensory modules. However, communication
along such long-distance links is metabolically expensive [6, 7].
Zhang and colleagues find that with a fixed energy budget (or
constraint on total path length), deviating from the empirically
reported power-law exponent reduces both the sending and
receiving entropy. This finding suggests that the spatial
distribution of connections may optimize the diversity of
information propagated along the connectome for a fixed
energy budget.

Next, to examine the consequence of this spatial relationship on
the overall functioning of the network, the researchers simulate
dynamical models of neuron activity. Previous research has
established that brain networks consist of functional modules
that balance segregation and integration of activity in the
network [8]. Measuring the covariance of temporal activity
between neurons, the researchers quantify the extent to which
neurons engage with each other across diverse modules in the
network. They find that adding deviations from the observed
power-law distribution—either by varying its parameters or
introducing an exponential character—destroys the balance
between segregation and integration in the network.

Finally, Zhang and colleagues use their findings to put forth a
model to predict neuronal connectivity. First, they use a
machine-learning algorithm to predict the presence of
connections between pairs of neurons based on just five
parameters: the distance between the neurons and the number
of incoming and outgoing connections at each neuron. These
features predict the connectome with high accuracy, suggesting
that it may be generally possible to predict the connectome
using simple rules. Then, using the three most important
features predicted by the algorithm—the distance, the incoming
connection number at one neuron, and the outgoing
connection number at the other—the researchers construct a
simple model to predict the connection probabilities. This
simple model agrees well with the empirical data and achieves
comparable accuracy to the machine-learning model.

What comes next? While the present study measures distances
between the main bodies of the neurons, it would be valuable
to account for the spatial morphology of neurons in
calculations, as some neurons have long axons that extend
across distances. It would also be interesting to see to what
extent these findings are valid in larger andmore complex
brains. Additionally, investigating the role and specificity of the
long-range connections identified in this work—such as
whether they connect distinct brain regions—could link the
work more directly to the neurobiology of the organism. Finally,
this work, together with recent findings of neuromorphic
features in spatially embedded artificial neural networks [9],
opens up exciting possibilities for artificial intelligence inspired
by brain geometry.
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