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Symmetry Spotted in Statistical
Mechanics
The identification of a new type of symmetry in statistical mechanics
could help scientists derive and interpret fundamental relationships in
this branch of physics.

By Benjamin Rotenberg

S ymmetry is a foundational concept
in physics, describing properties that remain unchanged
under transformations such as rotation and translation.

Recognizing these invariances, whether intuitively or through

Figure 1: (Left) In the so-called grand-canonical ensemble, a
system of particles (blue) is in contact with a heat and particle
reservoir (gray). The system retains a constant temperature and
chemical potential by exchanging energy and particles with the
reservoir. Schmidt and colleagues have found that systems such as
this one exhibit a previously unidentified form of symmetry [1].
(Right) This symmetry pertains to changes in coordinates (black)
that describe the positions andmomenta of the system’s particles.
These changes satisfy specific relations. In particular, when two
such transformations (purple and green) are applied successively,
the order in which they are performed affects the final coordinates.
Observable properties are left unchanged by these
transformations, leading to so-called hyperforce relations between
the observables.
Credit: APS/Alan Stonebraker

complex mathematics, has been pivotal in developing classical
mechanics, the theory of relativity, and quantummechanics.
For example, the celebrated standard model of particle physics
is built on such symmetry principles. NowMatthias Schmidt
and colleagues at the University of Bayreuth, Germany, have
identified a new type of invariance in statistical mechanics (the
theoretical framework that connects the collective behavior of
particles to their microscopic interactions) [1]. With this
discovery, the researchers offer a unifying perspective on subtle
relationships between observable properties and provide a
general approach for deriving new relations.

The concept of conserved, or time-invariant, properties has
roots in ancient philosophy and was crucial to the rise of
modern science in the 17th century. Energy conservation
became a cornerstone of thermodynamics in the 19th century,
when engineers uncovered the link between heat and work.
Another important type of invariance is Galilean invariance,
which states that the laws of physics are identical in all
reference frames moving at a constant velocity relative to each
other, resulting in specific relations between positions and
velocities in different frames. Its extension, Lorentz invariance,
posits that the speed of light is independent of the reference
frame. Einstein’s special relativity is based on Lorentz
invariance, while his general relativity broadens the idea to all
coordinate transformations. These final examples illustrate that
invariance not only provides relations between physical
observables but can shape our understanding of space, time,
and other basic concepts.

In 1918, the mathematician Emmy Noether proved that a
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conserved quantity is associated with each continuous
symmetry of a physical system [2, 3]. For example, conservation
of linear or angular momentum reflects invariance under
translations or rotations in space, whereas energy conservation
reflects invariance under translations in time. This seemingly
abstract theorem reshaped how the laws of physics are derived
and even how “matter” and “interactions” are defined. For
instance, the standard model of particle physics is a quantum
field theory based on the concept of gauge invariance, the fact
that the laws of physics are unchanged by certain
transformations of the variables used to describe the laws. In
that case, the relevant symmetries are not as familiar as spatial
translations and rotations, but they guided the determination
of the corresponding conserved quantities, as prescribed by
Noether’s theorem.

Over the past few years, Schmidt and colleagues have put the
power of Noether’s theorem to work to obtain results in the
context of equilibrium statistical mechanics [4–6]. This branch
of physics deals with the properties of ensembles of
microscopic configurations of a classical system. One such
ensemble is the grand-canonical ensemble, in which the system
retains a constant temperature and chemical potential by
exchanging energy and particles with a heat and particle
reservoir (Fig. 1, left). Equilibrium statistical mechanics is the
relevant conceptual framework for understanding a large
system’s collective features, such as its phase diagram and
other thermodynamic properties, based on the microscopic
interactions of its particles.

In that previous work, Schmidt and colleagues introduced an
infinitesimal “phase-space shifting” operation, which
transforms the positions andmomenta of particles in a specific
way (Fig. 1, right). The researchers used this operation and
Noether’s theorem to derive exact relations for the correlations
between forces present in the system and general observable
properties. Such relations can be expressed as averages of
phase-space functions. For example, the correlation between
the local density of external forces acting on the system and the
local density of particles is equal to the gradient of the latter.
The researchers coined such identities “hyperforce” relations.

In the current study, Schmidt and colleagues have identified the
phase-space-shifting operation as a gauge transformation for
microscopic states in equilibrium statistical mechanics.

Importantly, this transformation leaves the microstates and all
corresponding phase-space functions, including all observable
properties, unchanged. Such a gauge invariance provides an
elegant and efficient framework for rederiving and verifying
hyperforce relations. Crucially, it also delivers a consistent
framework for understanding these relations and a systematic
way to obtain new ones. The researchers illustrate their results
through numerical simulations of a specific system:
one-dimensional hard rods confined between two hard walls.
In doing so, they show that gauge invariance is also preserved
when using a finite, instead of infinitesimal,
phase-space-shifting operation.

As noted by Schmidt and colleagues, the role of gauge
transformations also resonates with other strategies to
compute statistical properties of particle-based systems [7–10].
For example, asking what would change under a slight
adjustment of the coordinate system is not so different from
asking what would change under a slight movement of the
particles. By extension, the change in the probability of certain
microscopic states being present, which depends on their
energy, is related to the energy change associated with moving
particles. In turn, this probability change is correlated with the
forces acting on the particles because force is the gradient of
energy with respect to particle position.

The researchers’ gauge-invariance framework might lead to
new force-based estimators of the local properties of these
systems, such as the local particle density or the radial
distribution functions quantifying the spatial correlations
between particles. Such estimators might require fewer
microscopic configurations to achieve a target accuracy,
thereby reducing the computational cost and corresponding
carbon footprint. Future directions could include analyzing
dynamic properties in and out of equilibriumwithin the
statistical mechanics of trajectories, instead of microscopic
configurations. Considering gauge invariance in that context
would establish a stronger connection between equilibrium
statistical mechanics and quantummechanics. Beyond
fundamental work, the relations derived by the researchers,
and ones yet to be obtained from the proposed framework,
might give rise to new computational tools with applications in
all fields in which molecular simulations already play an
essential role, frommaterials science to molecular biology.
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