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Toward a Second Law for Living
Systems
A new theory related to the second law of thermodynamics describes the
motion of active biological systems ranging frommigrating cells to
traveling birds.

By Rainer Klages

I n 1944, Erwin Schrödinger published the bookWhat is life?
[1]. Therein, he reasoned about the origin of living systems
by using methods of statistical physics. He argued that

organisms form ordered states far from thermal equilibrium by
minimizing their own disorder. In physical terms, disorder
corresponds to positive entropy. Schrödinger thus concluded:
“What an organism feeds upon is negative entropy […] freeing

Figure 1: A biological cell (black outline) crawling on a substrate
extracts energy from its environment (purple arrows) and converts
that energy into self-propelled motion (green arrow). Sorkin and
colleagues have derived an equivalent of the second law of
thermodynamics for living systems, which establishes a relation
between such a cell’s active uptake of energy and its
random-looking path (blue line) in terms of entropy production [2].
The outlines show the migrating cell at regular time intervals, with
microscopy images at the start and end.
Credit: P. Dieterich et al. [10]; adapted by APS/R. Wilkinson

itself from all the entropy it cannot help producing while alive.”
This statement poses the question of whether the second law of
thermodynamics is valid for living systems. Now Benjamin
Sorkin at Tel Aviv University, Israel, and colleagues have
considered the problem of entropy production in living systems
by putting forward a generalization of the second law [2]. Using
an information-theoretic framework, they show that their
theory can be used to derive important thermodynamic
quantities and relations for living systems.

Sorkin and colleagues built upon concepts developed over the
past few decades. In the early 1990s, scientists pioneered the
study of fluctuation relations, which generalize the second law
of thermodynamics to single-particle systems far from thermal
equilibrium [3]. In parallel, other researchers laid the
foundations of stochastic thermodynamics, which takes
fundamental thermodynamic concepts (e.g., heat, work, and
entropy) developed for many-particle systems and applies
them to stochastic single-particle dynamics [4]. This framework
reproduces a whole hierarchy of previously derived fluctuation
relations, including the first and second laws of
thermodynamics for a randomly moving, or Brownian, particle
in a fluid [5].

In the past decade, fluctuation relations have been used to
describe biological dynamics by linking stochastic
thermodynamics with the emerging field of active matter [6].
Examples of active-matter systems range frommigrating
biological cells to flocks of birds tomoving crowds of people [7].
Active motion is self-driven, in stark contrast to the passive
dynamics of a Brownian particle. Think of a crawling cell, which
propels itself using energy taken up from its environment

physics.aps.org | © 2024 American Physical Society | December 23, 2024 | Physics 17, 182 | DOI: 10.1103/Physics.17.182 Page 1



VIEWPOINT

(Fig. 1). The cell’s path looks random, akin to the trajectory of a
Brownian particle in a fluid. But whereas such a particle is
passively driven by collisions with surrounding fluid molecules,
the cell moves actively by itself.

The dynamics of a Brownian particle is characterized by a
balance between the particle’s fluctuations in movement and
its dissipative interaction with its environment. Such balance is
expressed in terms of the particle’s diffusion coefficient, its
mobility, and the temperature of the surrounding fluid. This
so-called Einstein relation is an example of a
fluctuation–dissipation relation that holds for ordinary classical
fluids [3–5]. However, in more complex systems such as
polymer gels, the Einstein relation is broken, leading to
violations of conventional fluctuation relations [8]. In active
matter, the Einstein relation is typically also broken, reflecting
the specific uptake of energy and conversion into self-propelled
motion [7].

Sorkin and colleagues started from a so-called overdamped
Langevin equation, which can be used to model the dynamics
of systems without assuming the Einstein relation. Such
modeling includes examples of active matter and passive
Brownian particles as special cases. By applying stochastic
thermodynamics [4, 5], the team rederived the first and second
laws of thermodynamics by assuming the existence of an
ordinary thermodynamic temperature, as in the Einstein
relation.

The researchers then considered a crucial quantity in stochastic
thermodynamics known as informatic entropy production,
which measures the breaking of time-reversal symmetry on the
level of microscopic trajectories. Without assuming the Einstein
relation and its corresponding thermodynamic temperature,
but by imposing three specific physical conditions, Sorkin and
colleagues derived an equation for what they call a generalized
nonequilibrium temperature. Using this equation, one obtains
a second law without the Einstein relation. If one then assumes
this relation, the researchers’ generalized temperature boils
down to the ordinary thermodynamic temperature, and their
theory recovers corresponding results for conventional
stochastic thermodynamics.

An important consequence of the new theory is that, without
the Einstein relation and associated thermodynamic

temperature, conventional fluctuation relations are recovered
only on an abstract, information-theoretic level and not for
thermodynamic quantities—in line with previous work [8].
Assuming a generalized temperature, one can derive useful
thermodynamic relations such as the Clausius inequality, a
generalized “Carnot efficiency,” and bounds between two key
quantities—the extractable work and the free-energy change.
Sorkin and colleagues suggest that their concept of a
generalized temperature could be verified by applying their
theory to certain experimental systems in which the Einstein
relation is broken.

Achieving the derivation of a new form of the second law that
applies to living systems is quite a big claim. Given that the
theory does not require the Einstein relation, one might call it a
second law of athermal dynamics, where here “athermal”
denotes the nonthermodynamic active biological forces that
cause deviations from classical thermodynamics [5]. Notably,
the theory assumes that the dynamics is both overdamped and
Markovian—that is, independent of the system’s history.
However, the overdamped approximation, which neglects
acceleration and inertia, can fail when fluctuations depend on
position, such as for temperature gradients [9]. Moreover, many
active biological systems—such as migrating cells—exhibit
non-Markovian anomalous diffusion [10]. Along these lines,
violations of fluctuation–dissipation relations that are more
general than the Einstein relation can come into play [8].

These considerations call for further generalizations of the new
theory, as envisioned by Schrödinger [1]: “Living matter, while
not eluding the ‘laws of physics’ as established up to date, is
likely to involve ‘other laws of physics’ hitherto unknown,
which, however, once they have been revealed, will form just as
integral a part of this science as the former.”
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