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Precise Measurement of
Hydrogen’s Energy Levels
Researchers havemeasured the transition energy of several highly excited
states, which could help resolve a discrepancy about the size of the
proton.

By Ulrich D. Jentschura

P hysicists used to think they had a good idea of the
size of the proton. Values derived from measurements
of hydrogen’s emission spectrum and from

electron-scattering experiments agreed with a proton radius of
around 0.88 femtometers (fm). Then, in 2010, confidence was
shaken by a spectral measurement that indicated a proton
radius of approximately 0.84 fm [1]. In the years since, this
“proton radius puzzle” has become even more of a
head-scratcher, with some experiments supporting the original
estimate and others finding an even greater discrepancy. Simon

Figure 1: Some of the energy levels involved in Scheidegger and
Merkt’s measurements. The cubes represent approximations of the
electron probability densities of the 2S1/2 and 2P1/2 states.
Credit: APS/Carin Cain

Scheidegger and Frédéric Merkt at the Swiss Federal Institute of
Technology (ETH), Zurich, have now made precise new
measurements of the transition energies between one of
hydrogen’s metastable low-energy states and several of its
highly excited states [2] (Fig. 1). These measurements allow the
researchers to derive some of the atom’s properties, such as its
ionization energy, with greater confidence, which should help
clear up some of the confusion.

The 2010 study that “shrank the proton” (as the title of the
editorial summary in Nature jokingly stated) concerned the
2S–2P1/2 Lamb shift [1]. According to Dirac’s predictions, the 2S
and 2P1/2 levels of atomic hydrogen should be degenerate. The
Lamb shift refers to the lifting of this degeneracy by quantum
electrodynamic (QED) effects, the largest contribution being the
electron “self-energy” due to interactions with virtual photons.
Once this and other QED effects are accounted for, a tiny shift of
the bound-state energy levels remains, which can be attributed
to the proton’s finite size. By measuring this residual energy
shift, one can determine the proton radius directly. The authors
of the 2010 study did so using hydrogen atoms in which the
electron was replaced by its heavier cousin, the muon, since the
finite-size effect is stronger in this system.

Ever since that surprise result, researchers have tried to pin
down the proton radius both directly, via the finite-size effect,
and indirectly, via the Rydberg constant. The Rydberg constant
relates an atom’s energy levels to other physical constants and
is one of the key inputs used in calculations of the proton radius.
Determining its value requires painstaking measurements of the
transition energies between hydrogen’s various states. Several
groups have made monumental efforts in this regard, but the
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values they derive for the proton radius have been all over the
place. A 2018 measurement of the 1S–3S transition by a group
in France gave a value of about 0.88 fm [3], a 2019 measurement
of the classic Lamb shift (this time in regular hydrogen) by a
group in Canada came up with a value of about 0.833 fm [4],
and a 2017 measurement of the 2S–4P transition by a group in
Germany suggested a similarly low value of about 0.834 fm [5].
In 2020, the group in Germany arrived at a slightly higher value
of 0.848 fm [6]. In 2022, finally, from measurements of the
2S–8D transition, a group at Colorado State University proposed
a “compromise value” of about 0.86 fm [7].

Scheidegger and Merkt, like some of their predecessors, start
from hydrogen’s metastable 2S level. This state has a natural
lifetime of 0.122 seconds and provides a convenient
“launchpad” for transitions to high principal quantum numbers.
But the researchers go higher than most, accomplishing
measurements of transitions from that 2S launchpad into the
realm of highly excited “Rydberg” states with principal
quantum numbers n of 20–24. These Rydberg states have
undefined angular momenta but, due to the application of an
external electric field, defined Stark-state parabolic quantum
numbers. This field lets the researchers control and distinguish
between different fine-structure-resolved and
hyperfine-structure-resolved hydrogen eigenstates that would
otherwise overlap in energy. Scheidegger and Merkt find that all
of the measured transitions can be fitted by a unified
theoretical model that takes the quantum numbers of the
Rydberg states into account. In fact, they use the observed
splitting to calibrate the electric field. This in itself is no small
achievement, as it requires the diagonalization of complicated
hyperfine-resolved matrices of the Stark operator.

In order to understand the rationale of their experiment, one
needs to know that, to a good approximation, S states, and only
S states, have a nonvanishing probability density at the nucleus.
Together with their spherical symmetry, this makes these states
sensitive to the proton radius, with the nuclear-size
correction—that is, the energy-level adjustment needed to
account for the proton’s finite size—proportional to 1/n3. In
fact, it is the sensitivity of the 2S state to the proton radius and
the insensitivity of the 2P states, which makes it possible to
determine the proton radius using the 2S–2P1/2 Lamb shift
alone.

But wait. Scheidegger and Merkt’s goal is to determine a
precise, accurate value of the Rydberg constant from
measurements of transition energies. If the energy levels of S
states—including their 2S launchpad—depend on the nuclear
size, how can they obtain a value that’s independent of the
proton radius?

The answer lies in the additional input that they use—namely,
the value of the Lamb shift transition 2S–2P1/2 measured by the
group in Canada in 2019 [4]. By adding that value to the
frequency of the transition from the 2S state to a highly excited
Rydberg state, Scheidegger and Merkt effectively measure the
transition from the 2P1/2 state to the highly excited Rydberg
state. Now, both the upper and lower levels are largely
independent of the proton radius. One can always find such
combinations of frequencies that are independent of the proton
radius and therefore give the Rydberg constant. Here, the lucky
circumstance is that the prefactors that correct for the proton
radius are unity. For example, if one wanted to determine the
Rydberg constant on the basis of the 1S–2S and 2S–4P transition
frequencies, the prefactors would be 1/7 and −1. In Scheidegger
and Merkt’s work, by contrast, the simple sum of the 2S–2P1/2

and the 2S-to-n = 20 frequencies eliminates the proton radius.

Scheidegger and Merkt’s determination of the Rydberg constant
comes with a caveat: other measurements of the classic Lamb
shift transition 2S–2P1/2 exist—notably, by Lundeen and Pipkin
[8] and Hagley and Pipkin [9]. Those measurements, although
carried out in the 1980s and 1990s, are not much less precise
than the 2019 measurement by the group in Canada [4] but
indicate a larger proton radius. The reliability of Scheidegger
and Merkt’s determination depends on which group’s
measurement of the 2S–2P1/2 Lamb shift is most accurate. In
order to put this dependence into perspective, note that classic
Lamb shift measurements need to overcome an important
obstacle—the extremely short lifetime of the hydrogen 2P state.
This state is one of the shortest-lived excited states in all neutral
atoms, and measuring its transitions presents a major
challenge. Thus, we can conclude that there remains work to be
done before we can be confident about the true value of the
Rydberg constant.

This caveat does not apply to Scheidegger and Merkt’s
measurement of the value of the ionization energy of atomic
hydrogen. The ionization energy can be determined very
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reliably, because the only additional input data needed are the
hydrogen 1S–2S frequency and the 1S hyperfine frequency.
These frequencies are both known to have more than sufficient
accuracy, as measurements are facilitated by the very small
natural linewidths of both the 1S–2S frequency and of the
1S hyperfine transition [6–10]. As a result, the value for the
ionization energy of hydrogen obtained by Scheidegger and
Merkt constitutes not only the most precisely known ionization
energy yet known of any bound system but also one of the most
precisely known of all physical constants.
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