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The Neuron vs the Synapse:
Which One Is in the Driving Seat?
A new theoretical framework for plastic neural networks predicts
dynamical regimes where synapses rather than neurons primarily drive
the network’s behavior, leading to an alternative candidate mechanism
for workingmemory in the brain.

By David Dahmen

T he brain is an immense network of neurons, whose
dynamics underlie its complex information processing
capabilities. A neuronal network is often classed as a

complex system, as it is composed of many constituents,
neurons, that interact in a nonlinear fashion (Fig. 1). Yet, there is
a striking difference between a neural network and the more
traditional complex systems in physics, such as spin glasses:
the strength of the interactions between neurons can change
over time. This so-called synaptic plasticity is believed to play a
pivotal role in learning. Now David Clark and Larry Abbott of
Columbia University have derived a formalism that puts
neurons and the connections that transmit their signals

Figure 1: When the dynamics of neurons and synapses in a neural
network can equally influence the dynamics of the whole network,
specific neuronal activity patterns can dynamically arise. These
patterns become stable if the synaptic dynamics halts, “freezing”
neuronal states until synaptic dynamics resume.
Credit: D. Clark/Columbia University

(synapses) on equal footing [1]. By studying the interacting
dynamics of the two objects, the researchers take a step toward
answering the question: Are neurons or synapses in control?

Clark and Abbott are the latest in a long line of researchers to
use theoretical tools to study neuronal networks with and
without plasticity [2, 3]. Past studies—without plasticity—have
yielded important insights into the general principles governing
the dynamics of these systems and their functions, such as
classification capabilities [4], memory capacities [5, 6], and
network trainability [7, 8]. These works studied how temporally
fixed synaptic connectivity in a network shapes the collective
activity of neurons. Adding plasticity to the system complicates
the problem because then the activity of neurons can
dynamically shape the synaptic connectivity [9, 10].

The reciprocal interplay between neuronal and synaptic
dynamics in a neuronal network is further obscured by the
multiple timescales both types of dynamics can span. Most
previous efforts to theoretically investigate the collective
behavior of such a network with plasticity assumed there were
two distinct sets of timescales for the neuronal and synaptic
dynamics, with one of the two being roughly constant. Thus, the
question of how such a network would behave if the neuronal
and synaptic dynamics evolved in parallel remained open.

In developing their formalism, Clark and Abbott turned to
dynamic mean-field theory, a method originally devised for
studying disordered systems. They extended the theory so that
it incorporates synaptic dynamics alongside neuronal

physics.aps.org | © 2024 American Physical Society | April 1, 2024 | Physics 17, 50 | DOI: 10.1103/Physics.17.50 Page 1



VIEWPOINT

Figure 2: The two graphs in the image show two-dimensional
projections of neuronal activity at two different time points. The
dots indicate activity patterns that attract (indicated by blue
arrows) and store neuronal states when plasticity is off. The
cartoons portray the corresponding networks of neurons (blobs)
and synapses (hemispheres; size indicating strength) for the
corresponding synaptic dynamics.
Credit: APS/Alan Stonebraker

dynamics. They then devised a simple model that qualitatively
accounts for various important ingredients of plastic neuronal
networks: a nonlinear neuronal input-to-output transfer,
distinct timescales for neuronal and synaptic dynamics, and a
control parameter that tunes the level and type of plasticity in
the network.

The researchers find that synaptic dynamics play a major role in
shaping the overall behavior of a neuronal network when the
synaptic and neuronal dynamics evolve on a similar timescale.
In fact, Clark and Abbott show that they can tune howmuch the
dynamics of the neurons and synapses each contribute to the
dynamics of the overall network. Interestingly, the analysis
reveals that for strong Hebbian plasticity [9]—a type of
plasticity driven by the increase in efficacy of a synapse when its
connecting neurons are simultaneously active—synaptic
dynamics drive the network’s global behavior, underlining the
importance of its incorporation.

The model also links the strength and nature of plasticity in the
network to changes of a key dynamical property of such a
network: how chaotic it is. Chaotic networks exhibit

self-sustained variable activity that is highly sensitive to
perturbations. Clark and Abbott show that, depending on the
strength, synaptic dynamics can accelerate or slow down
neuronal dynamics and promote or suppress chaos. The
researchers also observe a particularly interesting and
qualitatively new behavior, which arises when the synapses
dynamically generate specific favorable neuronal activity
patterns (fixed points) in the network. These fixed points can
“freeze in” when plasticity is turned off, causing the states of the
neurons to stay constant (Fig. 2). The states only resume the
ability to change when plasticity is turned back on. The
researchers term this behavior freezable chaos. In freezing the
state of the neurons, freezable chaos can serve as a mechanism
to store information that is reminiscent of howworking
memory is thought to operate.

This prediction, as well as the proposals of experiments to
disentangle freezable chaos from other predicted working
memory mechanisms, is a key advance of the new study and
paves the way for manymore exciting works in the future. One
goal of such work is understanding how the brain processes
external inputs from sensory stimuli. Clark and Abbott consider
the dynamics of their neuronal network in the absence of any
external input. Extending the model so that it can account for
externally driven transient dynamics that interact with plasticity
could allow researchers to predict network structures and
dynamics that relate to this important brain task. Furthermore,
it is important to transfer insights from this abstract neuronal
network to more realistic networks that factor in biologically
relevant properties of the brain, such as that neurons
communicate via discrete spikes, have specifically structured
connection patterns, and come in multiple distinct classes.
Moving to biologically realistic networks has proved successful
for past models, and we can anticipate similar successes for this
new theory.

David Dahmen: Institute for Advanced Simulation, Jülich Research
Centre, Germany

REFERENCES
1. D. G. Clark and L. F. Abbott, “Theory of coupled

neuronal-synaptic dynamics,” Phys. Rev. X 14, 021001 (2024).
2. R. Kempter et al., “Hebbian learning and spiking neurons,”

Phys. Rev. E 59, 4498 (1999).
3. H. Sompolinsky et al., “Chaos in random neural networks,”

physics.aps.org | © 2024 American Physical Society | April 1, 2024 | Physics 17, 50 | DOI: 10.1103/Physics.17.50 Page 2

Alan Stonebraker https:/alanstonebraker.com
https://doi.org/10.1103/PhysRevX.14.021001
https://doi.org/10.1103/PhysRevX.14.021001
https://doi.org/10.1103/PhysRevX.14.021001
https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.1103/PhysRevE.59.4498
https://doi.org/10.1103/PhysRevE.59.4498


VIEWPOINT

Phys. Rev. Lett. 61, 259 (1988).
4. C. Keup et al., “Transient chaotic dimensionality expansion by

recurrent networks,” Phys. Rev. X 11, 021064 (2021).
5. T. Toyoizumi and L. F. Abbott, “Beyond the edge of chaos:

Amplification and temporal integration by recurrent networks
in the chaotic regime,” Phys. Rev. E 84, 051908 (2011).

6. J. Schuecker et al., “Optimal sequence memory in driven
random networks,” Phys. Rev. X 8, 041029 (2018).

7. S. S. Schoenholz et al., “Deep information propagation,” 5th
International Conference on Learning Representations, ICLR

2017. arXiv:1611.01232.
8. F. Schuessler et al., “The interplay between randomness and

structure during learning in RNNs,” in Advances in Neural
Information Processing Systems, edited by H. H. Larochelle
et al. (Curran Associates, New York, 2020), Vol. 33.

9. D. O. Hebb, “The Organization of Behavior,” (Wiley & Sons, New
York, 1949).

10. J. C. Magee and C. Grienberger, “Synaptic plasticity forms and
functions,” Annu. Rev. Neurosci. 43, 95 (2020).

physics.aps.org | © 2024 American Physical Society | April 1, 2024 | Physics 17, 50 | DOI: 10.1103/Physics.17.50 Page 3

https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevX.11.021064
https://doi.org/10.1103/PhysRevX.11.021064
https://doi.org/10.1103/PhysRevX.11.021064
https://doi.org/10.1103/PhysRevX.11.021064
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1146/annurev-neuro-090919-022842

