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Viewing a Quantum Spin Liquid
through QED
A numerical investigation has revealed a surprising correspondence
between a lattice spin model and a quantum field theory.

ByOleg Starykh

T he search for a quantum spin liquid (QSL)
in a real magnetic material has been at the forefront
of condensed-matter physics since this exotic quantum

state was first proposed over half a century ago. Meanwhile,
theorists continue to grapple with understanding what rich
physics might emerge from this state. Now Alexander Wietek of
the Max Planck Institute for the Physics of Complex Systems in
Germany and his collaborators have made a significant advance
toward that goal. Through numerical simulations, they have
presented a compelling numerical case that the spectrum of
elementary excitations of a well-studied QSL has a one-to-one
correspondence with the spectrum of excitations of a

Figure 1: Artistic sketch of a triangular lattice antiferromagnet
showing the 120° state (yellow arrows). Mathematically, the system
can be described with a quantum field theory in two spatial
dimensions plus time. Excitations in the quantum field, as
represented by a wave-like undulation in the lattice, give rise to
photons, magnetic monopoles, and other phenomena.
Credit: O. Starykh/University of Utah; adapted by APS/Carin Cain

well-studied quantum field theory [1]. If a real QSL is
discovered or fabricated, the correspondence opens the
prospect of testing theories from particle physics with
condensed-matter systems. For example, it would provide us
with a new “habitat” where hypothetical elementary particles,
such as magnetic monopoles, could be spotted.

The word “liquid” in QSL hints at a fluid-like behavior of the
magnetic moments, the spins, that constitute the basic
components of the theoretical model that describes a magnetic
material. In most QSLmodels, spins are arranged periodically in
a two- or three-dimensional lattice. However, their directions
do not exhibit any obvious periodic pattern and instead perform
a never-ending quantum-mechanical dance for which the only
classical analogy could be a flowing liquid.

It was realized early on that for spins to form a liquid, they must
interact with their neighbors antiferromagnetically—that is,
pairs of interacting spins should minimize their energy by being
antiparallel [2]. At the same time, the lattice that the spins
inhabit must be frustrated—that is, it should have a geometry
that makes it impossible for the spins to settle on a single
common axis in spin space to point along.

A two-dimensional triangular lattice can harbor a QSL.
However, that seeming simplicity is deceptive. Consider the
case in which the spins on the triangular lattice interact with
their nearest neighbors only (an interaction called exchange J1).
Numerous numerical and approximate analytical studies have
established that this case forms the ordered “120° state” (Fig. 1).
However, adding a small antiferromagnetic interaction J2
between next-nearest neighbors does the trick [3]. Such a
model is known as the Heisenberg J1 − J2 triangular
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antiferromagnet. Several numerical studies have explored the
model using different numerical methods. All of them found the
ground state to be a spin liquid when 0.07 < J2/J1 < 0.15. This
novel quantum state is bordered by a 120° state at small J2 and
by another ordered state, a collinear-stripe state, at larger J2.

One of those studies also found that the model’s lowest-energy
state can be described by a Dirac QSL [4]. This state’s rich
structure is what Wietek and his collaborators explored in their
new research. The theoretical description of a Dirac QSL shares
striking similarities with quantum electrodynamics in two
spatial directions plus time (QED3) and with two-dimensional
graphene. Like graphene, the Dirac QSL hosts two sets of
massless Dirac fermions corresponding to different valleys in
the Brillouin zone. In addition, both sets of fermions carry an
additional internal (sublattice) index and a spin quantum
number. Fermions are subject to the constraint that every site
of the triangular lattice is occupied by exactly one particle. In
momentum space this translates into lower Dirac bands that are
filled and upper ones that are empty.

A resemblance of the Dirac QSL to QED3 was previously
suggested in a field theory description of the J1 − J2 Heisenberg
antiferromagnet on a kagome lattice [5]. Here, the occupancy
constraint was enforced by the time-like component—a scalar
potential—of the emergent dynamic gauge field. The
emergence of the gauge field is unavoidable because every spin
operator is “fractionalized” into the product of two fermion
operators. Spatial components of the gauge field originate from
phase fluctuations of the exchange interaction between spins.

The QED3 structure of the Dirac QSL outlined above hints at a
multitude of possible excitations, the most important of which
are particle–hole excitations of Dirac fermions, photon-like
waves of the gauge field, andmagnetic monopoles. These
excitations are characterized by quantum numbers, such as
momentum and spin, and by lattice space group operations
[5, 6]. Wietek and his collaborators constructed all possible
QED3 excitations on a carefully chosen 36-site cluster and then
evaluated their overlap with numerically exact low-energy
eigenstates of the lattice spin model on the same cluster for the
same set of quantum numbers. The results are encouraging.
For the total of almost 200 eigenstates, they found significant
overlaps, ranging from 0.4 to 0.9, in the spin-liquid region. This
remarkable finding establishes an essentially one-to-one

correspondence between QED3 and the J1 − J2 Heisenberg
model.

A useful perspective on this result is provided by the analogy
with physicist Robert Laughlin’s famous 1983 paper [7], which
uncovered the physics of the fractional quantum Hall effect by
demonstrating a significant and substantial overlap between
the numerically computed ground state for a system of only
three particles in the magnetic field and the variational wave
function for the u = 1/3 fractional quantum Hall. That overlap,
which is analogous to the newly discovered QSL–QED3

correspondence, helped to open the door to fractional
quasiparticles becoming candidates for topological quantum
computing.

More work is needed to better understand howQED3 excitations
manifest in the frustrated antiferromagnet’s physical response,
which could be crucial to the experimental detection of a QSL
[8]. Another important question regards the stability of the
Dirac QSL to physical perturbations, such as the introduction of
spin–lattice coupling and the application of an external
magnetic field [9]. The progress along these and related
directions requires a better understanding, both analytically
and numerically, of the correlation functions of the physical
operators that are constructed from themagnetic monopoles.
With more work, a breakthroughmay come along soon.

Oleg Starykh: Department of Physics and Astronomy, University of
Utah, Salt Lake City, UT, US
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