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Strange Kinetics Shape Network
Growth
A connection between time-varying networks and transport theory opens
prospects for developing predictive equations of motion for networks.

By Ivan Bonamassa

M any real-world networks change over time. Think,
for example, of social interactions, gene activation in
a cell, or strategy making in financial markets, where

connections and disconnections occur all the time.
Understanding and anticipating thesemicroscopic kinetics is an
overarching goal of network science, not least because it could
enable the early detection and prevention of natural and
human-made disasters. A team led by Fragkiskos Papadopoulos
of Cyprus University of Technology has gained groundbreaking
insights into this problem by recasting the discrete dynamics of
a network as a continuous time series [1] (Fig. 1). In doing so,
the researchers have discovered that if the breaking and
forming of links are represented as a particle moving in a
suitable geometric space, then its motion is subdiffusive—that
is, slower than it would be if it diffused normally. What’s more,

Figure 1: Artistic illustration of the mapping proposed by
Papadopoulos and collaborators recasting the discrete growth of
networks into continuous, diffusive-like behaviors of particles on
latent geometric spaces.
Credit: I. Bonamassa/Central European University

the particles’ motions are well described by fractional Brownian
motion, a generalization of Einstein’s classic model. This feat
establishes a profound connection between the kinetics of
time-varying or “temporal” networks and anomalous transport
theory, opening fresh prospects for developing predictive
equations of motion for networks.

Networks, whether they represent a brain or an infrastructure,
are dynamical systems in which a set of points, or nodes, are
linked together according to basic wiring rules. Identifying
these rules has been amajor leitmotif in network science. Over
the years, a consensus has coalesced around two equally
important factors that shape connections: “popularity,” in
which highly connected nodes attract the majority of new
connections over time, and “similarity”—or homophily, as it is
called in the context of sociology—which embodies the
tendency of similar entities to link. In a seminal article from
2012, Papadopoulos and a different team of collaborators
examined networks built using a wiring rule that optimized the
product of these two factors: a new node would connect to the
most connected andmost similar among the existing nodes [2].
Such networks could accurately describe many fundamental
features of real systems, including the small-world property, the
high level of clustering and self-similarity.

Most importantly, those model networks also comprised a
latent geometric representation lurking in their discrete
structure. To reveal this geometric mapping, one projects the
nodes of a growing network onto points on a two-dimensional
disk. Nascent nodes are assigned a radial coordinate defined as
the logarithm of their time since birth. Because older nodes
have more chance to attract connections, time since birth is a
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measure of popularity. Meanwhile, angular coordinates are
assigned such that the closer two nodes are to each other on
the circle, the more similar they are. In this representation, the
optimal wiring rule has a simple geometric interpretation: it
connects nodes at a minimum distance in hyperbolic space.
Characterized by its negative curvature, this space comes into
play because the hyperbolic distance between two nodes is
equivalent to minimizing the product of their popularity and
similarity.

Mapping networks onto latent geometric spaces brings into
action an arsenal of physics tools and ideas that usually apply
only to continuous systems. Among these tools are geometric
renormalization and the identification of spacetime
symmetries, analogous to those characterizing cosmology or
general relativity, which leave the large-scale structure of
networks invariant. This is why the incorporation of geometric
concepts is a game changer in network physics: it transcends
the discrete topological nature of networks, enabling their
study in continuous spaces [3].

In their latest work, Papadopoulos and his collaborators
applied this powerful quality of network geometry to tackle a
grand challenge in network science: Do fundamental equations
of motion exist that characterize the temporal evolution of
networked complex systems? To see why this questionmight be
tricky, consider the history of network dynamics. It’s a
well-researched area that has relied on a wealth of discrete
models predicting the large-scale structure of networks from
simple wiring rules [4]. On the one hand, the discrete nature of
these models has helped to reveal profound phenomena
accompanying network growth, such as Bose-Einstein
condensation of edges in which a single node captures a
macroscopic fraction of available links [5] and phase transitions
akin to the Berezinskii-Kosterlitz-Thouless transition in
two-dimensional spin models [6]. On the other hand, that same
discreteness has forestalled the identification of common
aspects of the stochastic processes that accompany network
evolution, thereby hindering the formulation of a unified
theoretical framework. The advance made by Papadopoulos
and his team is rooted in the idea that the discrete growth of
networks can bemapped onto a continuous single-particle
trajectory in their corresponding geometric space. The kinetics
can then be understood through classical transport theory,
which has the potential to lead to more general equations of

motion.

By leveraging the hyperbolic representation, Papadopoulos and
his team showed that the trajectories of six different real-world
temporal networks—among them, US air transportation,
Bitcoin transactions, and arXiv collaborations—exhibit universal
subdiffusive kinetics that are well described by a generalization
of Brownianmotion called fractional Brownianmotion.
Subdiffusive kinetics of this genre usually arise in crowded
biological systems, where particles spread in environments
characterized by impenetrable walls or energy barriers [7]. The
observation by Papadopoulos and his team of a hidden
fractional Brownianmotion driving network growth suggests a
similar interpretation. Clusters andmodular structures,
commonly found in real-world networks, confine the system’s
growth by acting as topological traps for new nodes. Properties
like clustering, which quantifies the prevalence of triangles in
networks, are proxies for geometricity. This is because they
reflect the existence of an underlying metric that increases the
likelihood that nodes sharing a neighbor are also connected [8].
It is therefore reasonable to expect that the latent subdiffusive
growth of networks has something to do with their underlying
geometry. Indeed, Papadopoulos and his team provide results
supporting this expectation. The researchers show that
networkmodels that lack a latent geometric space also lack any
latent subdiffusive motion and instead have purely diffusive
trajectories.

This finding has exciting implications. In general, kinetics
whose variance grows slowly over time are more likely to be
predictable. The latent trajectories analyzed by Papadopoulos
and his team do indeed exhibit a notable degree of
predictability with remarkably slow-growing variances—a
property that makes them akin to so-called rough volatility
financial models [9]. In the same vein, the strong resemblance
to biological processes raises important questions. Specifically,
why do temporal networks evolve through subdiffusivemotion?
Could this be because it leads to adaptive improvements [10] in
a way akin to the evolution of living cells?

More generally, how helpful will latent kinetics turn out to be in
forecasting tipping points or catastrophic shifts in, say, housing
markets or epidemics? Also, Papadopoulos and his team
observed subdiffusive trajectories, but what about
superdiffusive motion? Does it have a geometric representation
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too? We don’t know yet whether answering questions of this
kind will culminate in some fundamental equation of motion for
networks. For the time being, Papadopoulos and his team’s feat
nevertheless enables us to envision avenues of future research
toward meeting this grand challenge.

Ivan Bonamassa: Department of Network and Data Science,
Central European University, Vienna, Austria
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