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Machine Learning Predicts
Liquid–Gas Transition
Conventional theory has trouble predicting the conditions that will cause
a liquid to boil, but a neural-network-based approach performs better.

ByMark Buchanan

I t’s surprisingly difficult to predict whether a substance will
be a liquid or a gas under given conditions. Now researchers
have demonstrated improved phase-transition predictions

by applying a recently developed technique that combines a
standard theoretical approach with a neural network [1]. Their
results for a model substance agree with simulations even for
regimes that were not included in the neural network’s training
set. The researchers expect the new technique to find wide use
by scientists trying to understand the behavior of liquids and
gases.

Transitions. Water is one of many substances whose
phase—liquid, solid, or gas—depends on the temperature and
pressure. A machine-learning technique improves scientists’ ability
to predict which form a substance will take under specific
conditions.
Credit: Serg Zastavkin/stock.adobe.com

In applied chemistry andmaterials science, a mathematical
approach called classical density-functional theory (DFT) allows
researchers to predict the behavior of a system of interacting
particles. The particles are stand-ins for atoms or molecules
that could collectively form a liquid or a gas, for example. The
theory asserts that the lowest-energy state of a system at
equilibrium can be calculated by finding the 3D distribution of
particles that minimizes a quantity called the free-energy
functional. This functional reflects the various ways the
particles can interact.

But creating a functional that gives accurate predictions for a
large number of particles—even if the interaction is assumed to
be as simple as that of billiard balls—is a major challenge, says
Florian Sammüller of the University of Bayreuth in Germany.
Given those difficulties, predictions for real atoms are even
harder. “Classical DFT is conceptually powerful,” he says, “yet
we require approximations to make actual predictions, and
finding good approximations turns out to be very difficult for
realistic materials. So progress in the field has been slow.”

One approach to this problem is to simulate the interactions of
a system of particles and then to use those results to construct a
free-energy functional. But such efforts, Sammüller says,
require large amounts of computing resources and often give
only hints of the overall behavior. Moreover, there are no
shortcuts that allow you to predict how a fluid will change as
the temperature changes. “You usually have to run another
simulation” at each temperature, he says.

In previous work, Sammüller and colleagues have given a proof
of principle of a more powerful way to use computer
simulations to improve the reliability of DFT. Rather than using
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Just a phase. A plot of the inverse of the isothermal
compressibility of the truncated Lennard-Jones fluid, calculated
using the machine-learning-assisted DFTmethod. Values range
from large and positive (dark red) through 0 (white) to large and
negative (dark blue). This quantity reflects changes in the fluid
properties with varying temperature (increasing upward) and
density (increasing to the right). In the red area, the fluid is either a
liquid or a gas, depending on the conditions. In the blue area, the
fluid spontaneously separates into liquid and gaseous regions. The
technique correctly predicts the shape of the white line even when
trained only on data corresponding to temperatures above the
parabolic peak (pink dots).
Credit: F. Sammüller et al. [1]

simulations as a source of insight to help refine their choice of
the free-energy functional, they used simulations to train a
neural network to estimate this functional directly. Importantly,
in the training data, they included results from simulations run
at a range of temperatures and other conditions. They then
used this trained network as a replacement for the free-energy
functional in the DFT calculation.

The researchers have already demonstrated the efficacy of this
approach for a simple model system—a gas of hard sphere
particles that interact only when they collide [2]. But this simple
system cannot exhibit both liquid and gas phases. The team has
now applied the method to a more realistic model fluid, called

the truncated Lennard-Jones fluid. In this model, particles
interact in pairs, repelling at short distances, attracting at
somewhat larger distances, and having zero interaction at the
largest distances. Based on extensive simulations, physicists
already understand the behavior of this more complex model in
detail.

To apply their machine-learning technique, the researchers first
conducted nearly 900 distinct simulations of the model fluid
under different physical conditions, including a wide range of
temperatures, and used these data to train their neural network.
They then used this network in a DFT calculation to estimate a
variety of fluid properties. They found that the new approach
gave results agreeing closely with prior simulations, including
capturing the precise details of the liquid-to-gas transition and
its dependence on temperature and other conditions.

In some ways, the success was even better than expected. For
example, the teamwas initially concerned about applying the
neural network to conditions for which there is no stable liquid
or gas. “In the simulations, the network never saw such cases,
so why should its prediction make any sense?” Sammüller says.
“But these concerns turned out to be unfounded.”

The accuracy of the technique is “nothing short of astounding,”
says theoretical physicist Andrew Parry of Imperial College
London. “The combination of machine learning and classical
DFT described in this paper is eye-opening,” he says, “and there
is no reason to think the approach can’t be used for more
complex fluids. I’m sure the technique will quickly be adopted
by the community.”

An obvious next step, Sammüller says, is to apply the method to
more realistic and complicated fluids, such as water or
molecular mixtures. “A nice thing about classical DFT is that it is
quite general,” he adds, “so we expect very similar techniques
to work for these more sophisticated cases.”

Mark Buchanan is a freelance science writer who splits his time
between Abergavenny, UK, and Notre Dame de Courson, France.
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