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Spike Mechanism of Biological
Neurons May Boost Artificial
Neural Networks
By incorporating electrical pulses with shapes similar to those of the
spikes from biological neurons, researchers improved the ability to train
energy-efficient types of neural networks.

By Dominik Dold

A rtificial neural networks (ANNs) have
brought about many stunning tools in the past decade,
including the Nobel-Prize-winning AlphaFold model for

protein-structure prediction [1]. However, this success comes
with an ever-increasing economic and environmental cost:

Figure 1: (Left) A biological neuron is composed of a cell body
(triangular structure) and dendrites (small branches). Output
signals are sent to other neurons via the axon (purple line labelled
“output”). Incoming spikes from another neuron are integrated at a
synapse—the point where the transmitting axon and the dendrites
connect. The synapse is represented by a weight (W). (Right) In the
LIF model, decreasingW delays the neuron’s output-spike time
until the input is too small to hit the threshold (orange
pulse)—leading to the output spike’s disappearance. In contrast,
the QIF model has no such threshold. Spikes are represented by
divergences of the membrane potential, which lead to a
continuous dependence of the output-spike time on both weight
and input-spike timing.
Credit: D. Dold/University of Vienna; adapted by APS/Alan
Stonebraker

Processing the vast amounts of data for training suchmodels on
machine-learning tasks requires staggering amounts of energy
[2]. As their name suggests, ANNs are computational algorithms
that take inspiration from their biological counterparts. Despite
some similarity between real and artificial neural networks,
biological ones operate with an energy budget many orders of
magnitude lower than ANNs. Their secret? Information is
relayed among neurons via short electrical pulses, so-called
spikes. The fact that information processing occurs through
sparse patterns of electrical pulses leads to remarkable energy
efficiency. But surprisingly, similar features have not yet been
incorporated into mainstream ANNs. While researchers have
studied spiking neural networks (SNNs) for decades, the
discontinuous nature of spikes implies challenges that
complicate the adoption of standard algorithms used to train
neural networks. In a new study, Christian Klos and
Raoul-Martin Memmesheimer of the University of Bonn,
Germany, propose a remarkably simple solution to this
problem, derived by taking a deeper look into the
spike-generation mechanism of biological neurons [3]. The
proposedmethod could dramatically expand the power of
SNNs, which could enable myriad applications in physics,
neuroscience, andmachine learning.

A widely adoptedmodel to describe biological neurons is the
“leaky integrate-and-fire” (LIF) model. The LIF model captures a
few key properties of biological neurons, is fast to simulate, and
can be easily extended to include more complex biological
features. Variations of the LIF model have become the standard
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for studying how SNNs perform onmachine-learning tasks [4].
Moreover, the model is found in most neuromorphic hardware
systems [5]—computer chips whose architectures take
inspiration from the brain to achieve low-power operation.

One of the most relevant variables used in biology to describe
neuron activity is the electric potential difference across their
cell membrane, known as the membrane potential. In the LIF
model, this is represented by a capacitor that is charged
through a resistor. The resistor represents ion channels within
the cell membrane that allow charged particles to flow in and
out of the neuron. Input spikes from other neurons drive
currents that charge (or discharge) the capacitor, resulting in a
rise (or fall) of the potential, followed by a decay back to the
capacitor’s rest value. The strength of this interaction is
determined by a scalar quantity called the weight, which is
different for each neuron–neuron connection. A neuron itself
produces an output spike when its potential exceeds a
threshold value. After this output spike, the potential is reset to
a subthreshold value. In this type of model, spikes are solely
modeled by the time of their occurrence, without accounting for
the actual shape of the electrical pulse from a spiking neuron.

Training an SNN boils down to finding, for a given set of input
signals, weights that collectively result in desired network
responses—that is, temporal patterns of electrical pulses. This
process can be illustrated for a simple case: a neuron that
receives a single spike from another neuron as an input,
connected via an adjustable weight (Fig. 1, left). Starting with a
large, positive weight, the input spike results in a sharp rise of
the neuron’s potential, hitting the threshold almost
immediately and triggering an output spike (Fig. 1, right). By
decreasing the weight, this output spike gets shifted to later
times. But there is a catch: If the weight becomes too small, the
potential never crosses the threshold, leading to an abrupt
disappearance of the output spike. Similarly, when increasing
the weight again, the output spike reappears abruptly at a finite
time. This discontinuous disappearance and reappearance of
output spikes is fundamentally incompatible with some of the
most widely used training methods for neural networks:
gradient-based training algorithms such as error
backpropagation [6]. These algorithms assume that continuous
changes to a neuron’s weights produce continuous changes in
its output. Violating this assumption leads to instabilities that
hinder training when using these methods on SNNs. This

situation has constituted a major roadblock for SNNs.

In their new work, Klos and Memmesheimer find that only a
minor adjustment to the LIF model is required to satisfy the
aforementioned continuity property in SNNs: including the
characteristic rise–fall shape of spikes on the membrane
potential itself. In biological neurons, a spike is a brief, drastic
rise and fall of the neuron’s membrane potential. But the LIF
model reduces this description to spike timing. Klos and
Memmesheimer overcome this simplification by investigating a
neuronmodel that includes such a rise: the quadratic
integrate-and-fire (QIF) neuron. This model is almost identical
to the LIF model, with one key difference. It contains a
nonlinear term designed to self-amplify rises in the membrane
potential, which in turn leads to a divergence from the steady
state at a finite time (the spike). They show that with this model
the output-spike time depends continuously on both weights
and input-spike times (Fig. 1, right). Most importantly, instead
of disappearing abruptly when the input is too weak, the spike
timing smoothly increases to infinity.

To ensure that neurons spike sufficiently often to solve a given
computational task, the researchers split a simulation into two
periods: a trial period, in which inputs are presented to the SNN
and outputs read from it, and a subsequent period in which
neuronal dynamics continue, but spiking is facilitated by an
additional, steadily increasing input current. The resulting
“pseudospikes” can be continuously moved in and out of the
trial period during training, providing a smoothmechanism for
adjusting the spike activity of SNNs.

Extending previous research on training SNNs using so-called
exact error backpropagation [7–9], the present result
demonstrates that stable training with gradient-basedmethods
is possible, further closing the gap between SNNs and ANNs
while retaining the SNNs’ promise of extremely low power
consumption. These results in particular promote the search for
novel SNN architectures with output spike times that depend
continuously on both inputs and network parameters, a feature
that has also been identified as a decisive step in a recent
theoretical study [10]. But research will not halt at spikes. I look
forward to witnessing what the incorporation of more intricate
biological features—such as network heterogeneity, plateau
potentials, spike bursts, and extended neuronal structures—will
have in store for the future of AI.
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