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The Landau theory of phase transitions and the con-
cept of symmetry breaking provide a unifying descrip-
tion of even such seemingly different many-body sys-
tems as a paramagnet cooled to the verge of ferromag-
netic order or a metal approaching the superconducting
transition. What happens, however, when these sys-
tems can lose energy to their environment? For exam-
ple, in rare-earth compounds called “heavy-fermion”
materials, the f-shell magnetic moments interact with
a sea of mobile electrons [1]. Similarly, near the metal-
superconductor transition in ultrathin wires, the elec-
trons pair up in a connected network of small, super-
conducting puddles that are surrounded by a bath of
unpaired metallic electrons [2]. The surrounding metal
gives rise to a parallel resistive channel and hence dissi-
pation. Introducing dissipation into a many-body quan-
tum mechanical problem presented a theoretical chal-
lenge that was only resolved in the last quarter of the
20th century [3-5].

Phase transitions in quantum systems with both dis-
sipation and disorder are, not surprisingly, even more
complicated. Whether we like it or not, all experimental
systems, and especially the examples above, have some
degree of disorder such as a structural imperfection or
the presence of impurities. Therefore understanding the
effects of disorder is not merely an abstract intellectual
challenge, it is necessary for explaining what we actu-
ally measure in these systems. In particular, even a
small amount of disorder can have a big effect in low-
dimensional quantum systems, where ordering is more
difficult and interaction effects are enhanced. A notable
example is Philip Anderson’s discovery of localization
in metals (see his Nobel address [6]).

In a paper appearing in Physical Review B, Thomas
Vojta and Chetan Kotabage of the Missouri University
of Science and Technology and José Hoyos, now at
Duke University, provide yet another example of the
profound impact that disorder has on a large class of
low-dimensional quantum systems [7]. In their paper,
they derive the theory for a quantum phase transition
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in a one-dimensional system that is akin to both the
magnetic and superconducting examples noted above:
a chain of magnetic moments, whose motion is dis-
sipative, and whose local interaction parameters are
random. Unlike previous work, Vojta, Kotabage, and
Hoyos tackle both dissipation and randomness on equal
footing. Despite the complexity of this problem, they
find the low-energy behavior of such dissipative ran-
dom chains through a series of intuitive and simple ar-
guments. Furthermore, they demonstrate that the low-
energy behavior is independent of the type and amount
of disorder in the chain. That is, it is universal.

To understand this perhaps unintuitive result, we first
discuss the concept of universality and explain how it
arises in random systems using a simple example. The
term universality entered our vocabulary with the de-
velopment of renormalization group theory, which was
based on the realization that an important but over-
looked symmetry of nature is scale invariance [8]. This
symmetry is not omnipresent. Rather, it describes sys-
tems at critical points on the boundary between two
phases, for instance, between a ferromagnet and a para-
magnet. As a paramagnet is cooled to the verge of ferro-
magnetism, finite, strongly magnetized droplets start to
form, albeit with each droplet pointing in a different di-
rection. At the critical point, these droplets appear in
all sizes, and if we zoom out, the size distribution of
the droplets looks the same. But, if zooming out leaves
the system looking the same, this is equivalent to say-
ing that microscopic details are unimportant in deter-
mining the magnet’s behavior. This insensitivity to mi-
croscopic details is called universality. (We should add
that in a quantum system, zooming out is tantamount
to only looking at fluctuations on large length scales, or,
equivalently, at the low-energy behavior.)

Typically, the description of a nondisordered, many-
body quantum system begins with translational invari-
ance and momentum conservation. Such a system of
particles can be described by a set of states with a well-
defined momentum denoted by the wave number k. A
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useful example of a simple many-body problem that
we can solve in this way is the one-dimensional “tight-
binding” model of noninteracting fermions, in which
each fermion is tightly bound to a site on a chain, but
can hop to a neighboring site with probability ¢. The en-
ergy spectrum for this model has a simple form: ¢, =
—2t cos(k).

What happens, however, when translational invari-
ance is broken? For our purposes, we can still use the
hopping-fermion model, but let the hopping strength ¢
depend on where the fermion is on the chain: t = ¢;. In-
stinctively, we would anticipate that the appearance of
nonuniformity in this fermion-hopping system would
mangle the neat cosine form of the energy spectrum and
replace it with a random and noisy spectrum that cru-
cially depends on the details of how the hopping varies
from site to site. Quite surprisingly, however, the op-
posite seems to occur: the disorder introduced through
the randomness in the hopping gives rise to an energy
spectrum of the fermion states that, albeit different from
the pure system’s cosine spectrum, is essentially inde-
pendent of the details of the disorder. This is also the
essence of universality in disordered quantum systems:
the low-energy physical properties are independent of
the disorder distribution.

The system that Vojta, Kotabage, and Hoyos analyze
has much in common with the simple fermion-hopping
problem, and it can be solved by the same method: real-
space renormalization group. Shang-keng Ma, Chandan
Dasgupta, and Chin-kun Hu of the University of Cali-
fornia, San Diego proposed this method in 1979 to solve
the problem of random interactions between spins on a
chain [9]. We can demonstrate and use their basic argu-
ments to understand the random-hopping problem de-
scribed above.

We begin by concentrating on the strongest hopping
element, tmax, and ignore everything else in the Hamil-
tonian as a much weaker perturbation. A fermion put
in two neighboring sites, say 1 and 2, with tmax hop-
ping between them, can minimize its energy by choos-
ing to be in the symmetric superposition |¢) = [1) + |2),
which has the energy e = —fmax. In fact, this fermion
gets stuck in this bond between the two sites, since any-
where else it would have a higher energy. But fermions
from neighboring sites, say site 0, can also hop to site
1, locking the first fermion inserted in the bond be-
tween the two sites at site 2. This is an excited state
with energy ¢ = 0. This predicament can resolve itself
with the fermion of site 2 hopping to site 3, leaving one
fermion behind in the state [¢) = |1) + |2) with energy
of ¢ = —tmax. This looks as if a fermion hopped di-
rectly from site 0 to site 3, leaving the two sites 1 and 2
untouched. So, we might as well forget sites 1 and 2 and
solve a new Hamiltonian in which a small “renormal-
ized” tp3 connects sites 0 and 3. Repeating this proce-
dure with the strongest bond at each stage will result in
all fermions inserted localized between two sites, which
can be arbitrarily far apart (Fig. 1). From this proce-
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FIG. 1: Fermions on the random-hopping chain. Instead of
moving freely throughout the chain, fermions are confined to
pairs of sites (connected by the arcs), which are often nearest
neighbors, but can also be very far apart. The pair formation
is scale invariant: if we zoom out, and only draw sites that
are separated by a distance matching our new reduced reso-
lution, the localization pattern looks the same. (Illustration:
Alan Stonebraker/stonebrakerdesignworks.com)

dure, we can extract the energy of the fermions’ states:
a fermion localized between two sites L links apart will
have a binding energy E obeying In E ~ —(L)'/2[10].
Vojta, Kotabage, and Hoyos have shown that a sim-
ilar real-space analysis applies quite generally to dissi-
pative disordered chains on the verge of a symmetry-
breaking phase transition. Their focus is on a system
that is similar to a chain of dynamically fluctuating mag-
netons (magnetic moments that can be described by a
single variable). Each magneton interacts ferromagneti-
cally with its nearest neighbors and has an energy scale
r; associated with its dynamic fluctuations. These fluc-
tuations compete with the energy scale J; that prefers
neighboring magnetons to align with one another and
seeks to establish magnetic order. Just as we solved the
hopping-fermion problem above, Vojta, Kotabage, and
Hoyos show that we can solve the disordered dissipa-
tive quantum magnet by either (a) iteratively eliminat-
ing the most fluctuating magneton (the moment with
the largest r;), which results in a ferromagnetic inter-
action between its neighbors, or (b) allowing the two
most strongly interacting neighbors (i.e., those with the
strongest J; between them), to unite and form a single
magneton, with a renormalized lower energy scale, r, of
the dynamic fluctuations. A sketch of the resulting state
is shown in the bottom of Fig. 2. This, they show, results
in essentially the same universal behavior as is found in
fermions in the random-hopping chain. Physically, this
problem describes the critical behavior of superconduct-
ing puddles that form in a metallic wire right above the
superconducting transition temperature (top of Fig. 2).

Vojta, Kotabage, and Hoyos go beyond solving the
model to show that dissipative one-dimensional sys-
tems close to criticality are always susceptible to dis-
order. The ground-state properties of such systems
cannot be analyzed using perturbation theory near the
point of translational invariance. The results force us to
reevaluate much of the research done on superconduct-
ing wires and magnetic chains, and to pose the ques-
tion: How many other low-dimensional electronic sys-
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FIG. 2: (top) The model from Vojta, Kotabage, and Hoyos
can describe what happens when an ultrathin metallic wire
is cooled to the verge of turning into a superconductor. Su-
perconducting puddles (orange) are connected to their neigh-
bors through “weak links” in a metallic environment. Because
the superconductivity in each puddle is described by a com-
plex order parameter, the puddles can be modeled as planar
magnetons, with a magnitude and direction that correspond to
the amplitude and phase of the order parameter, respectively.
The metallic environment induces dissipation and dampens
fluctuations of the order parameter. (bottom) Restricting our-
selves to the language of magnetons, we sketch out how the
details on small length scales become unimportant to the de-
scription of the system. Grain 4 fluctuates so much that its
effective magnetic moment is destroyed. Next, grains 2 and 3
unite because of the strong magnetic coupling between them,
and point in the same direction, but they too can diminish due
to strong resulting fluctuations. Finally, grains 1 and 5 unite
due to a resulting coupling between them. (Illustration: Alan
Stonebraker/stonebrakerdesignworks. com)
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tems can be described in the same way and have the
same low-energy properties? What properties, so far
taken for granted, are altered due to the presence of
even a small amount of disorder? As the work of Vo-
jta, Kotabage, and Hoyos proves, the combination of
disorder, interactions, and low dimensionality (which
enhances fluctuations) is bound to provide us with
more surprises and fascinating examples of disorder-
dominated phases, waiting to be discovered.
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