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Along with the quark gluon plasma and cold atom gasses, graphene is establishing its place as a perfect liquid.
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Ever since it was shown that graphene—a single layer
of carbon atoms—could be isolated from graphite, it has
occupied a center stage of condensed matter physics.
The popularity of graphene is rooted in the unusual na-
ture of its low-energy excitations: near the Fermi level,
the electron energies scale linearly with their momenta.
This means that the electrons can be described as “mass-
less” fermions, though with a velocity of about 300 times
less than the velocity of light. The linear dispersion re-
lation also implies a vanishing density of single-particle
states at the Fermi level, which should make the effects
of the Coulomb interaction between electrons weak.

This usual mantra, however, may sometimes be quite
misleading, as argued by Markus Miiller at the ICTP
in Trieste, Italy, Jorg Schmalian at Ames Lab and Iowa
State University, US, and Lars Fritz at Harvard Univer-
sity, US, in a paper appearing in Physical Review Let-
ters[1]. They show that a particularly suitable measure
of how strongly the excitations in a given quantum fluid
interact is given by the dimensionless ratio between the
fluid’s sheer viscosity and entropy density. They find
that the value of this ratio in graphene is surprisingly
close to its likely lower bound [2]. Such a low viscosity-
to-entropy ratio, somewhat paradoxically, means that
the electrons in graphene form a quantum liquid that is,
in fact, strongly interacting. By this criterion graphene
comes closer to being a “perfect fluid” than several
other quantum systems that have often been labeled as
strongly correlated.

Landau’s notion of a Fermi liquid as a system of inter-
acting fermions that, at low energies, effectively behave
as noninteracting quasiparticles is the central paradigm
of many-body physics. Our modern way of thinking
about a Fermi liquid is to use the language of renor-
malization group theory—a theory that extracts the es-
sential physics of many-body systems by zooming out
from the microscopic details. In this framework, one
would say that although the Coulomb interaction be-
tween electrons in a typical metal in an absolute sense
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is not weak, its effective strength depends on the en-
ergies at which the system is probed [3]. In a Fermi
liquid, the effective interaction parameters decrease at
lower temperatures and frequencies until they reach sat-
uration. This idea receives its simplest realization pre-
cisely in graphene: The Fermi surface is shrunk to just
two points (“Dirac” points) in momentum space, near
which the energy depends linearly on the quasiparticle’s
momentum and the density of quasiparticle states also
vanishes linearly. The scarcity of low-energy excitations
renders all the short-range components of the Coulomb
electron-electron interactions irrelevant[4]. Using a term
from renormalization group theory, these interactions
“flow” towards zero as fast as the first power of tem-
perature. From this perspective, graphene appears to be
a perfect example of a weakly interacting Fermi liquid.
Or so it would seem.

What about the fact that the Coulomb interaction is a
long-ranged force? In metals, this does not matter much,
since the quasiparticles screen the interaction and make
it effectively short ranged. But in graphene there are not
enough low-energy quasiparticles to screen effectively,
and the Coulomb interaction remains long ranged [5].
As a result, the Coulomb interaction does not change
with the energy scale. Or, in the parlance of renormal-
ization group theory one would say that the coupling
¢ in the Coulomb interaction V(r) = g/r represents
an exactly marginal coupling, which does not flow at
all with the change in energy scale. Its main effect, it
turns out, is to produce a shift in the Fermi velocity
that diverges at low temperatures, albeit only as a loga-
rithm: o(T) ~ glog(Ty/T), where the high-energy scale
To ~ 10° K is set by the width of the conduction energy
band [6]. If one defines the dimensionless strength of the
Coulomb interaction a(T) = g/(hv(T)), this coupling
constant would slowly approach zero as the system is
probed at progressively lower temperatures (Fig. 1).

So theorists can paint a picture of graphene with
only a few strokes: At temperature or frequency scales
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FIG. 1: The schematic “flow” of the coupling constants de-
scribing weak electron-electron interaction with decreasing
temperature in graphene. « parameterizes the ~ 1/r tail
of the Coulomb interaction, and A stands collectively for the
electron-electron repulsion on the lattice scale. The density of
the arrows increases with the speed of the flow. (Illustration:
Alan Stonebraker)

much below Ty any physical quantity is, to leading or-
der, given by its value for the noninteracting system of
quasirelativistic particles with an effective velocity v(T).
The leading corrections are small at low temperature
and proportional to a(T) ~ 1/log(Ty/T)[7]. As long
as the electron-electron interaction is not strong enough
to turn graphene’s ground state into an insulator [4], the
effect of the interaction on the low-energy properties is
fairly small. In this respect graphene resembles some
of our most cherished physical theories: quantum elec-
trodynamics (at low energies) and quantum chromody-
namics (at high energies).

There are, however, quantities that do diverge in the
noninteracting regime; namely, some response func-
tions, which measure how quickly the system restores
the thermodynamic equilibrium. In fact, in the com-
plete absence of interactions, the relaxation time would
be infinite. In graphene the relaxation time 7 is inversely
proportional to temperature and a®. This suggests that
the viscosity of the electronic fluid in graphene—which,
like in any fluid, is a measure of resistance to a shear
force and for graphene is given by 1 ~ n(e)T, where
n ~ (kgT/hv)? is the density of thermally excited quasi-
particles and () ~ kgT is their average energy—can
to leading order be written as 7 = (C,/h)(kgT/va)?,
where C; is a numerical constant of proportionality.
Normalizing this result by graphene’s entropy density
then yields

/s = (Cyre/90(3))(1/a(T))(h/kp), 1)
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with all the numerical constants fully displayed. The
last expression for the viscosity-to-entropy ratio shows
it is a dimensionless number in the units of nature’s con-
stants 71/ kp. If the low-temperature limit of the flowing
coupling constant «(T) were finite, this number would
be a characteristic of a “fixed point” of the renormaliza-
tion group flow, akin to other universal numbers that
characterize fixed points, critical exponents and ampli-
tude ratios as prime examples. (Fixed points are the spe-
cial points in the coupling constant space where the flow
stops.) Since a(T), however, in graphene approaches
zero at low temperatures, the ratio #/s ultimately di-
verges, but only very slowly. Building on their pre-
vious calculation of graphene’s dc conductivity [8], in
a technical tour de force, Miiller et al. determined the
constant of proportionality C; to ultimately find 17/s ~

0.00815(log(To/T))? 1/kg. At room temperatures, this
number is only ~ 0.3%/kp.

To appreciate the above result one obviously needs
a useful point of reference. Let us ask what the same
ratio would be, this time in a truly strongly interacting
system. Kovtun, Son, and Starinets [2] studied a num-
ber of strongly interacting field theories, some of which
were dual to those describing black holes, and found
that the ratio is finite, universal, and in fact not much
lower than the result in graphene: 17/s = (71/4)(h/kg).
One expects that this number may provide a natural
lower bound, and indeed the result for graphene con-
forms to this conjecture. The dimensionless viscosity of
graphene, however, is significantly lower than in sev-
eral other systems that would undoubtedly deserve to
be characterized as strongly coupled. For example, in
cold atoms with a diverging scattering length, 77/s ~
0.5(%1/kg), whereas for helium at the superfluid critical
point, n7/s ~ 0.7(h/kg)[9]. It should be noted, though,
that if the chemical potential y of graphene is tuned to
lie away from the two Dirac points, it will behave as a
conventional metal with a Fermi surface. In this case,
the viscosity increases at low temperatures at a much
faster rate as 17/s ~ (|u|/T)>.

The fact that the viscosity-to-entropy ratio in
graphene is so low and almost temperature independent
is another example that this material is what would be
called a “quantum critical” system: there is no length
scale other than the ones provided externally by the
temperature, frequency of the measurement probe, or
finite size of the sample. One of the main preoccupa-
tions of condensed matter physicists for many years has
been understanding quantum critical points in various
systems. Graphene appears to be a ready-made, par-
ticularly gentle example of fermionic quantum critical-
ity, with comparatively few gapless fermions appearing
only near special points in momentum space. One may
expect many lessons about the nature of quantum trans-
port, response to magnetic field, or the effects of dis-
order in critical systems to be learned from this decep-
tively simple-looking system.

The main lesson of the work of Miiller, Schmalian,
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and Fritz, however, may be that graphene is, in a certain
well-defined sense, rather far from being weakly inter-
acting. In fact, with a possible exception of the ultrarel-
ativistic quark-gluon plasma [9], from temperatures as
low as 50 K to temperatures as high as 300 K graphene
may be closer to the notion of a perfect strongly interact-
ing fluid than any other quantum system we currently
know. One cannot help but wonder what other sur-
prises this fascinating material has in store.
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