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Viewpoint

Atypical is normal at the metal-insulator transition
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Quantum states in disordered solids are characterized by wild spatial fluctuations. As a result, the behavior of
a single typical wave function differs markedly from the ensemble average.
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When disorder (i.e., impurities or defects) is intro-
duced into a periodic crystal, its spatially extended elec-
tronic wave functions become localized. As localized
states cannot carry an electric current at zero tempera-
ture, increasing the disorder changes a metal to an in-
sulator. This phase transition is called the Anderson lo-
calization transition. Right at the transition point, the
wave functions are neither extended nor localized but
take on a multifractal character. This means they are
interwoven sets of different fractals, each characterized
by its own noninteger dimension. In a paper appear-
ing in Physical Review B[1], Matthew Foster of Columbia
University, Shinsei Ryu of the University of California,
Berkeley, and Andreas Ludwig of the University of Cal-
ifornia, Santa Barbara, all in the US, calculate the spec-
trum of the fractal dimensions of a typical wave function
at the Anderson transition, which is a fingerprint of its
spatial structure. Remarkably, the spectrum of a single
typical wave function differs considerably from that ob-
tained by an average over all possible disorder configu-
rations. This is caused by rare atypical configurations of
the disorder that dominate the average spectrum. The
calculation of Foster, Ryu, and Ludwig not only pro-
vides further insight into the transport properties of dis-
ordered materials, but also opens the door to attacking
other systems where rare events dominate macroscopic
physical quantities.

To understand these findings, it is instructive to re-
call the basic physics of Anderson localization [2, 3].
The electronic wave functions in a perfect (i.e., disorder-
free) d-dimensional periodic crystal extend over the en-
tire sample and have the same dimensionality as that of
the crystal. (Formally, the dimensionality D of a wave
function can be obtained from the scaling of the prob-
ability density |ψ(r)|2 ∼ L−D with sample size L.) In
the opposite limit of strong disorder, where wave func-

tions are localized, their amplitude drops off exponen-
tially away from some point r0, ψ(r) ∼ exp(−|r− r0|/λ)
(λ is called the localization length). Once the sample size
is much larger than the localization length, such local-
ized wave functions are independent of the sample size;
their dimension is thus zero. What happens between the
two limiting cases? Upon introduction of weak disorder
into a perfect crystal, localized states first appear in the
tails of the energy bands while the states in the band
center remain extended, at least in dimensions d > 2.
With increasing disorder, the number of localized states
increases at the expense of the extended states. The
system undergoes the Anderson metal-insulator phase
transition when the states at the Fermi energy become
localized. Moving away from the strong-disorder limit,
the localization length increases with decreasing disor-
der until it diverges at the transition.

Right at the transition point, the probability density
|ψ(r)|2 varies wildly and irregularly from place to place
(in other words, it fluctuates). Its spatial structure be-
comes very complex and makes up a so-called mul-
tifractal [4, 5]. While a simple fractal (also called a
monofractal) is a set of points with a single noninteger
spatial dimensionality, a multifractal can be understood
as an infinite set of interwoven monofractals of different
dimensionalities. A nice graph of a multifractal wave
function at the Anderson transition appears in a recent
publication by Vasquez, Rodriguez, and Römer [6]. To
characterize such a multifractal, we define at each point
in space an exponent α via the sample-size dependence
of the probability density, |ψ(r)|2 ∼ L−α. It is called the
singularity exponent and plays the role of a local frac-
tal dimension. In a multifractal, α varies from point to
point, as is sketched in Fig. 1, while it is constant in a
simple (mono)fractal. The ensemble of all points that
share the same singularity exponent, α, is itself a fractal

DOI: 10.1103/Physics.2.66
URL: http://link.aps.org/doi/10.1103/Physics.2.66

c© 2009 American Physical Society



Physics 2, 66 (2009)

FIG. 1: Schematic of a multifractal. Different points have dif-
ferent singularity exponents α. All points with the same α form
a fractal set of dimension f(α).

set of fractal dimension f (α). This means the number of
points with such an α scales as L f (α) with system size.
The function f(α) is called the multifractal (singularity)
spectrum. It fully describes the probability density and
thus serves as a fingerprint of the spatial structure of the
wave function.

Let us now turn to the question studied in the pa-
per by Foster, Ryu, and Ludwig, viz., how to find the
multifractal spectrum at the Anderson metal-insulator
transition. In experiments and in most computer simu-
lations, one normally deals with typical wave functions
occurring in a single representative sample, i.e., a single
realization of the disorder. In contrast, analytical tech-
niques so far have been focused on calculating averages
over the entire set of possible disorder configurations.
While averages and typical values of quantities with
weak random fluctuations (i.e., those with narrow prob-
ability distributions) are generally very similar, they can
display qualitatively different behavior in the presence
of strong random fluctuations. As discussed above, the
wave functions at the Anderson transition are character-
ized by wild spatial fluctuations. Therefore it is highly
desirable to calculate the multifractal spectrum of a typ-
ical wave function and compare it to the disorder aver-
age.

How do Foster, Ryu, and Ludwig attack this prob-
lem? Within the standard multifractal formalism [7], the
multifractal spectrum f (α) is obtained from the system-
size dependence of the moments Pq =

∫
ddr|ψ(r)|2q of

the probability density. The disorder averages 〈Pq〉 of
these moments are straightforwardly calculated within
the quantum field theory of Anderson localization.
However, calculating the typical values of these mo-
ments [which can be defined as the geometric mean
exp(〈lnPq〉) ] is more difficult. Foster, Ryu, and Ludwig
overcome this obstacle by combining the usual quantum
field theory with a functional renormalization group.
This method follows the evolution of not just the av-
erages but the full probability distributions of the mo-
ments Pq under spatial coarse graining (i.e., it keeps
track of entire functions, hence the name “functional”
renormalization group). From the distribution of the
moments, Foster, Ryu, and Ludwig obtain an analytical
answer for the typical multifractal spectrum.

The result of this formidable calculation is sketched
in Fig. 2. The f(α) spectrum at the Anderson transi-
tion has a finite width, reflecting the multifractal char-
acter of the wave function, i.e., different regions of the
sample feature different singularity exponents α. Im-
portantly, Foster, Ryu, and Ludwig find a qualitative
difference between the typical and average spectrums,
confirming earlier heuristic arguments [8]. The typical
spectrum is restricted to a finite interval [ α−, α+ ] where
f (α) is positive, while the average spectrum extends into
the region of negative f (α). How can one understand
this difference? A negative f(α) implies that the aver-
age number of (lattice) points with a singularity expo-
nent α is Lf(α) << 1 for sufficiently large systems. Thus
such points do not occur in a typical wave function. In
contrast, the ensemble average over the disorder also in-
cludes a small number of atypical configurations that
contain a higher number of points with such a singu-
larity exponent α. In the region of negative f(α), the av-
erage multifractal spectrum is thus dominated by these
rare samples and their anomalously localized or delo-
calized states. Graphs of such anomalous wave func-
tions can be found in a paper by Rodriguez, Vasquez,
and Römer [9].

Rare fluctuations and large disorder are topics of great
interest in today’s condensed matter physics with ap-
plications ranging from magnets and superconductors
to moving interfaces and chemical reactions [10]. One
of the central questions in this area is under what con-
ditions rare events dominate the properties of macro-
scopic systems. The work by Foster, Ryu, and Ludwig
demonstrates that one can deal with such rare events
systematically within a controlled analytical calculation,
paving the way for attacking this question in other sys-
tems.
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FIG. 2: Schematic of the multifractal spectrum at the Anderson
transition. The typical spectrum is restricted to the region of
positive f(α) and thus terminates at α− and α+. In contrast,
the average spectrum continues to negative f(α). The tails with
negative f(α) (shaded region) are produced by rare events that
do not occur in a typical wave function.
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