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A recent theory of gravity has stimulated intense debate and many explorations of its implications.
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Einstein introduced general relativity in the early 20th
century, and since then it has been proven to be an accu-
rate description of gravity beyond the regime of valid-
ity of Newtonian gravitation. Since then, people have
been asking what kind of modifications, or extensions,
one can make to it without contradicting observations.
In most cases, the focus has been on theories that re-
spect the physical principles of general relativity, and
the modifications were restricted to the action (an appro-
priate quantity integrated over a path in spacetime be-
tween a starting point and ending point) and the equa-
tions of motion that the action encodes, via the principle
of least action. In particular, if quantum mechanics de-
scribes gravitation as well as the other forces of nature,
as is widely believed, quantum corrections should in-
troduce small modifications to the action. However, the
study of possible corrections that disobey the physical
principles of general relativity has recently received a
boost by the theory recently proposed by Hořava [1, 2],
which posits the violation of a key symmetry principle
thought to be sacrosanct—Lorentz invariance—at short
distance scales. Now, in a paper in Physical Review Let-
ters, Hong Lu, Jianwei Mei, and Christopher Pope of
Texas A&M University, US, report their investigations
[3] into how the modifications proposed in Hořava’s
theory affect generic solutions of general relativity.

General relativity is a beautiful theory, whose main
physical insight is that gravity is the effect of geometry,
specifically, the curvature of spacetime. Matter curves
spacetime, and in turn, the curvature of spacetime de-
flects massive bodies, which we then interpret as the in-
fluence of gravity (Fig. 1). A natural consequence ap-
pears to be the principle of general covariance (which
is what is meant by “general” relativity), namely, that
physics should be the same in all reference frames, not
merely inertial ones. That is, under a general coordinate
transformation xµ → x′µ (xν), where the four-vector
xµ = (t, x), the physics should be invariant. However,
no physical principle dictates the exact form of the ac-

tion, beyond general coordinate invariance. For action,
Einstein used the integral of R (the scalar measure of the
curvature at each point), because it reproduces Newto-
nian gravity in the appropriate limit (small curvature R,
small velocity). But one can certainly add small covari-
ant corrections, such as a power of the curvature scalar.
In fact, such terms do appear as quantum corrections in
the only known quantum theory that includes gravity,
namely, string theory. In that case, however, general co-
variance remains satisfied.

The experimental tests of general relativity are very
stringent. Perhaps the most impressive everyday appli-
cation is the satellite global positioning system, whose
deviations in the absence of general relativity correc-
tions would add up to about 10 km per day [4]. But to-
day we have many more constraints from astrophysics,
and we know general relativity is correct to a large de-
gree of accuracy. Perhaps more importantly, if correc-
tions to the Einstein action break general covariance, we
have to have a good theoretical justification, since gen-
erally when we break an important symmetry, quantum
corrections spell disaster for the theory, amplifying the
problem.

There is, however, an example that served as a model
for Hořava’s theory. The example, due to Lifshitz [5],
involves the appearance of Lorentz symmetry (which
says, in the absence of gravity, that physics is the same
for all inertial observers moving through space) as an ac-
cidental symmetry at large distances in a simple scalar
theory without Lorentz invariance. Lifshitz’s theory has
the usual Galilean invariance of Newtonian mechanics.
Quantum corrections, which become larger at larger dis-
tances, were shown to give rise to a Lorentz invariant
theory at distances much larger than the scale at which
the theory is defined. In his original work, Lifshitz was
discussing the behavior of critical points (such as the
triple point) in condensed matter systems.

In Hořava’s theory, we have the same idea applied to
gravity. The theory, defined at small distances, has the

DOI: 10.1103/Physics.2.71
URL: http://link.aps.org/doi/10.1103/Physics.2.71

c© 2009 American Physical Society



Physics 2, 71 (2009)

FIG. 1: (Top) In Einstein’s general theory of relativity, gravity
is nothing more than the curvature of spacetime. A massive
object, such as the sun, causes a deformation of the spacetime
grid, while another object such as a planet or a light beam fol-
lows the shortest path (a “geodesic”) on this grid. To an ob-
server, this looks like a deflection of the trajectory caused by
gravity. (Bottom) A collapsing star can form a black hole so
dense and massive that it creates a region of infinite curva-
ture (a “singularity”) so that—inside the event horizon—light
cannot escape. Current research in gravitation is attempting
to modify general relativity to account for such objects consis-
tent with quantum theory. The work of Hořava [1, 2] and Lu et
al.[3] looks for ways to attack this problem. (Illustration: Carin
Cain)

natural generalization of Galilean invariance, namely,
general covariance in the space coordinates, x → x′(x)
and invariance under time reparametrizations, t →
t′(t). Again, quantum corrections are expected to give
rise to a general coordinate invariant theory at large dis-
tances. The arguments for this are not so strong as in
the case of the Lifshitz theory, since the quantization of
gravity, even in the Hořava version, is not very well de-
fined. What makes the Hořava theory so compelling,
however, is the fact that the most naive attempt at quan-
tization seems not to produce the same nonsensical infi-
nite results one gets in general relativity. Therefore what
was a physical principle for Einstein appears as an acci-
dental symmetry in Hořava’s theory, but the upside is
that it is much easier to introduce quantum mechanics.

Assuming that quantum corrections work as expected
in Hořava’s theory, it will give the proper action for gen-
eral relativity at large distances, and correction terms
that start to dominate at short distances, and break gen-

eral covariance. A priori there is a very large number of
such possible terms, but Hořava proposed also a simpli-
fied version, the “detailed balance action.” (The name is
given by analogy, it has no meaning in gravity. A formal
similarity with equations appearing in the quantum de-
scription of some thermodynamical systems prompted
the name.)

In the work of Lu et al.[3], a general spherically sym-
metric solution to Hořava’s detailed balance action is
investigated. In general relativity, the most general
spherically symmetric solution is the Schwarzschild so-
lution, describing everything from planets like the earth
to black holes. However, the solution of the detailed
balance action of Hořava deviates significantly from the
Schwarzschild solution, a reflection of the difficulty of
modifying general relativity. A small modification of
the detailed balance action has a solution closer to the
Schwarzschild solution.

Based in part on the results of Lu et al., I found [6]
that if we were to apply the detailed balance action to
the real world, general relativity would be reproduced
only on unobservable scales, larger than the size of the
Universe (the “cosmological horizon”). Modifications of
the detailed balance action, within Hořava theory, can
cure this problem. For instance, one natural modifica-
tion was proposed in [6], and another in [7]. It is still not
known if the quantum Hořava theory makes sense, and
more work in that direction is needed.

Finally, we should mention that other small modi-
fications of general relativity were proposed over the
years, and whether any of them makes sense is still
an open problem. Some of the better-known examples
are the Dvali-Gabadadze-Porrati model [8], which mod-
ifies general relativity at very large distances, and the
purely phenomenological Modified Newtonian Dynam-
ics (MOND) [9], which modifies Newtonian gravity at
small accelerations and large scales. However, unlike
these other cases, Hořava theory presents the tantalizing
possibility that we have a well-defined quantum theory
at short distances, without the need for additional fields.

The only known way to have a well-defined quan-
tum theory at short distances that preserves general
covariance—string theory—needs to postulate an infi-
nite number of kinds of particles, the excitations of the
string, all of them interacting with gravity. If a version
of Hořava theory is correct, would that circumvent the
need for string theory? Not necessarily, since we still
would need a consistent quantum theory of all kinds
of particles in nature, interacting with gravity, and it is
difficult to see how Hořava theory would accommodate
that by itself. It is conceivable that pure Hořava gravity
theory could arise as a limit of string theory, just as, say,
pure electromagnetism arises as a limit of string theory,
but only time and a lot more work will tell us.
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