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A mathematical formulism makes a step forward in proving the AdS/CFT correspondence that connects quan-
tum mechanics with gravity.
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In 1997, Juan Maldacena made the startling conjec-
ture that theories of gravity on curved spaces are equiv-
alent to ordinary quantum field theories confined to the
boundaries of those spaces. The most concrete example
of this correspondence is for a string theory living on a
ten-dimensional spacetime called AdS5× S5[1], which is
conjectured to be equivalent to a special form of Yang-
Mills gauge theory living on the boundary of the five-
dimensional AdS5 space (called anti-de Sitter space).
(The boundary in the case of AdS5 is a four-dimensional
spacetime.) In the 1970s, Yang-Mills theories were de-
veloped as an extension of field theories like quantum
electrodynamics (QED) to the case of strong interactions
in quantum chromodyamics (QCD), while anti-de Sitter
spaces are solutions to Einstein gravity equations with
a negative cosmological constant that gives a constant
curvature of space.

The gauge theory that appears in Maldacena’s conjec-
ture is a highly symmetric version called N = 4 super
Yang-Mills (SYM). N= 4 SYM has the maximal amount
of supersymmetry—the symmetry that pairs up bosons
and fermions. It is also an exact conformal field theory
(CFT), meaning that the physics is the same under any
rescaling of energies or length scales. (This is a property
not shared by the strong interactions, which come with
a natural energy scale of about 200 MeV, but N= 4 SYM
still provides a useful theory for understanding several
aspects of the strong interaction.) If the correspondence,
called the AdS/CFT correspondence, is correct then we
will have successfully merged gravity with quantum
mechanics, at least in this particular background space-
time, since the N= 4 SYM on the boundary is believed
to be a consistent theory.

The AdS/CFT correspondence is widely accepted as
true but remains unproven, even in certain limits where
calculations become vastly simplified. The difficulty in
proving AdS/CFT is that it works as a strong/weak du-
ality. That is, if particles in the gauge theory are strongly

coupled, implying that the quantum corrections to the
theory are large, then the curvature of AdS5 × S5 is
small. This leads to a weak coupling between the dif-
ferent vibrational modes in the string theory, and vice
versa. Thus one must be able to make computations in
the strong coupling regime for at least one of the theories
(either AdS gravity or quantum field theory) in order to
directly compare results between them. In a paper ap-
pearing in Physical Review Letters[2], Nikolay Gromov,
Vladimir Kazakov, and Pedro Vieira (GKV), at DESY
in Hamburg, Germany, École Normale Supérieure, in
Paris, France, and the Max-Planck-Institut in Potsdam,
Germany, respectively, make important progress in this
direction by formulating a set of functional equations,
called a Y-system (see Appendix for greater detail), for
the gauge theory that are true for any value of the cou-
pling—strong or weak. These equations open up the
possibility of directly computing a whole class of phys-
ical quantities in the gauge theory and comparing them
with string theory predictions.

The key idea behind the GKV results is integrability.
An integrable model is a many-body system that can ef-
fectively be reduced to a combination of two-body sys-
tems, rendering the theory solvable. This concept is per-
haps best explained by a simple and familiar example:
the Heisenberg ferromagnet in one dimension (Fig. 1).
In this model, L spin-1/2 magnetic dipoles lie on a circu-
lar chain. Each dipole is assumed to only interact with
the dipole closest to it on either side. The Hamiltonian
for this system is proportional to a coupling constant,
λ, times a sum over the magnetic interactions between
nearest neighbor spins.

The ground state has all of the spins aligned (say, up).
One constructs excited states—called “magnons”— by
adding down-pointing spins on the chain. The individ-
ual magnons are like particles, with a momentum pi and
a known dispersion relation for the energy, ε(pi). The
scattering of the magnons off of one another is encoded
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FIG. 1: An important calculation in gauge theory can be
mapped to one of the most fundamental toy models in the
study of magnetism: the Heisenberg spin chain. (Illustration:
Carin Cain)

in a momentum-dependent phase, called the S matrix,
that appears in the wave function for a two-magnon
state. Since the wave function must satisfy the condition
that x ≡ x + L, the momenta of two scattering magnons
are quantized. It turns out that for scattering processes
that involve more than two magnons, the quantization
conditions still only depend on the two-magnon S ma-
trices (and thus the system is integrable). The relation-
ship between the magnon momenta and the S matrices
leads to what are known as the Bethe equations and we
can solve them to find the allowed sets of pi. The en-
ergy of the states is the total of the magnon energies
E = Σj ε(pj).

What does this all have to do with the gauge theory?
It turns out that even though they describe very differ-
ent physical systems, we can map useful computations
in the gauge theory to an integrable problem analogous
to that of the Heisenberg magnet. To see this, consider
that the physical information of a conformal field the-
ory is contained in correlation functions of its composite
operators (or, observables). These operators are prod-
ucts of the elementary fields that constitute the gauge
theory. A correlation function tells us how the quantum
fluctuations of one operator are correlated with the fluc-
tuations of one or more other operators as a function of
their separation in space and time. Since the theory is
conformal, the only scales in the problem are the separa-
tions between the operators. Specifically, under a rescal-
ing of all lengths by a factor of β, an operator with a
well-defined scaling dimension ∆ will be multiplied by
a factor of β−∆.

There is a particular class of composite operators,
called “single trace operators,” that are invariant under
gauge transformations, a property all physical opera-
tors must satisfy. A single trace operator can be built
up by taking the trace of a product of three complex
scalar fields: Z(x), W(x), and Y(x), along with their
conjugates. (All fields in N= 4 SYM are like the glu-

ons of the strong interaction: they come with a color
and an anticolor at the same time. Although the strong
interaction has only three colors, in N= 4 SYM we can
consider an arbitrary number N of colors and the fields
are expressed as N × N matrices, with the row index la-
beling the color and the column index labeling the anti-
color.) Let us consider single trace operators containing
only two types of scalar fields, say Z and W. A typi-
cal operator made up of L such scalars would be given
by tr(ZZW. . . WZW. . . ZZ) with the Z and W fields ar-
ranged in some particular order inside the trace (note
that L here is simply the number of operators, and not a
physical length as in the Heisenberg spin chain). A free
scalar field has scaling dimension one in four spacetime
dimensions so the scaling dimension ∆ for our operator
is L when the coupling, that is, strength of the interac-
tions between the particles of the theory, is turned off.

However, the interactions of the gauge theory shift the
scaling dimension to ∆ = L + Γ, where Γ is called the
anomalous matrix and can be computed perturbatively
in the coupling g. For certain limits, it turns out that
Γ is equivalent to the Hamiltonian for the Heisenberg
chain magnet, with λ = g2N and in place of the mag-
netic exchange, one considers the interaction between
the fields at the ` and ` + 1 positions in the trace. There-
fore the first-order correction (one loop) to the anoma-
lous dimension matrix for this class of operators is the
Heisenberg Hamiltonian with the Z and W fields as the
up and down spins!

The one-loop anomalous dimensions are then found
by solving the Heisenberg Bethe equations. If we ex-
pand the class of operators to include all types of fields,
then the anomalous dimension matrix is still equivalent
to an integrable Hamiltonian and the Bethe equations
are enlarged to include a more general set of magnons
[3].

Higher loop contributions to the anomalous dimen-
sion can also be determined in the limit that L is infinite,
but the finite size corrections were a missing piece of
the puzzle [4]. Although for weak coupling (λ << 1),
Γ is well approximated by a local spin chain Hamilto-
nian, for λ ∼ 1 the Hamiltonian becomes long range.
In this limit, finite size effects become important [5, 6].
The GKV paper, which successfully treats both the weak
and strong coupling limits, incorporates previous work
on finite size systems to the particular problem of fi-
nite L operators in N = 4 SYM (see Appendix for de-
tails). What is remarkable is that they can calculate the
anomalous dimension out to four orders of perturba-
tion theory in a highly compact form. By comparison,
in a typical field theory calculation, this same compu-
tation could only be done with hundreds of Feynman
diagrams. String theory predicts that the anomalous di-
mension should scale as Γ ∼ 2λ1/4, when λ >> 1[7].
Recent numerical results using the GKV Y-system show
excellent agreement with this prediction. The GKV Y-
system promises to have other applications as well, es-
pecially within the intermediate region, λ ∼ 1, where
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neither perturbation theory nor string theory are partic-
ularly useful.

Even after 35 years of research on QCD, there are still
some features of gauge theories where we only have a
limited understanding. Any new results that can help
improve our intuition about these theories are clearly
significant. In this respect, the substantial effort by GKV
towards confirming Maldacena’s conjecture is a major
step forward.

Appendix

Underlying the GKV construction is what is called
the thermodynamic Bethe ansatz (TBA). Al. Zamolod-
chikov [8] observed that by switching the spatial and
temporal directions, the Euclidean path integral of a
relativistic 1+1 dimensional theory with the spatial di-
rection compactified on a circle of circumference L has
the same path integral as the uncompactified theory
at temperature T = 1/L. Hence the ground-state en-
ergy E(L) of the former equals the free energy F(1/L)
of the latter. F(1/L) is derived using the Bethe equa-
tions, which are valid because now the spatial dimen-
sion is infinite. The theory can have various species of
particles where each particle type has a dispersion rela-
tion εa(θ) =

√
p2

a + m2
a, or, in terms of a rapidity vari-

able θ, εa(θ) = macoshθ, pa(θ) = masinhθ. Zamolod-
chikov showed that the ground-state energy E(L) is
equal to the integral over θ of a simple expression in-
volving pa(θ) and Ya(θ) ≡ e−εa(θ)L, where the “pseudo-
energies” εa(θ) equal the usual energies εa(θ) at infinite
L. Subsequently, it was shown how to extract the en-
ergy of the exited states from this integral [9]. At finite L,
the pseudo-energies satisfy a series of consistency con-
ditions that depend on the particle S matrices. These
conditions reduce to a set of functional equations for the
Ya(θ) called the Y-system, and their form depends on
the symmetries of the theory.

The interchange of the spatial and temporal direc-
tions in the TBA replaces (p, ε) by (iε, ip). For a rela-
tivistic theory the dispersion relation is invariant under
this transformation. But the magnon dispersion rela-
tion found in N = 4 SYM is nonrelativistic, so, instead,
the TBA procedure sets the ground-state energy E(L)
equal to the free energy F∗(1/L) of a “mirror theory”
[10, 11], where the mirror has (p, ε) given by (iε∗, ip∗).
ε∗(p∗) is the dispersion relation of the original theory,
where the ∗ indicates that the quantities are evaluated in
the mirror’s physical region where iε∗ and ip∗ are real.
Gromov, Kazakov, and Vieira, following the important
work in Ref. [12], find the integral for E(L) over a ra-
pidity variable u, where now the integral involves a set
Yn,0(u) for the magnons in the mirror theory (n = 1),

and their bound states (n > 1). GKV then postulate that
the Yn,0(u) are part of an integrable Y-system, Ya,s(u),
where a and s are integers (a nonnegative). Definining
a new quantity Ta,s, where Ya,s = Ta,s+1Ta,s−1

Ta+1,sTa−1,s
, the GKV

Y-system can be written as a series of so-called Hirota
equations: T+

a,sT−a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1, with
T±a,s = Ta,s(u± i

2 ).
To solve these equations one must impose some

boundary conditions. First, the symmetry group struc-
ture of the magnons sets Ya,s(u) = 0 if both a > 2, |s| >
2. Second, there are transformations on the Ta,s that
leave Ya,s fixed, so one is free to set T0,s = 1. Third, one
can take the large L limit and use the Bethe equations
to determine the asymptotic form of the Yn,0. In this
limit the Yn,0 are exponentially suppressed, decoupling
the Tn,s into two independent halves where the exact ex-
pressions are known [13]. This information is sufficient
to generate the anomalous dimensions order by order in
λ using the Hirota equations.

Recently, GKV used the Y-system to generate numeri-
cally the anomalous dimension for the shortest nontriv-
ial operator, which has L = 4, from small to very high
values of λ[14].
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