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Tensor networks—a new tool for old problems
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A new renormalization group approach that maps lattice problems to tensor networks may hold the key to
solving seemingly intractable models of strongly correlated systems in any dimension.
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Some of the deepest and most difficult problems
in mathematics are also often the simplest to state.
The most celebrated example is Fermat’s last theorem,
whose statement can be understood by high school stu-
dents, and yet required the full arsenal of advanced
modern mathematics to prove. In condensed matter
physics, we are also faced with a difficult class of prob-
lems that can be stated quite simply, using language fa-
miliar to every beginning student of quantum mechan-
ics. There has been a sustained effort to attack these
problems by numerous physicists for over two decades,
but there is only partial progress to report. In a recent
paper appearing in Physical Review B[1], Zheng-Cheng
Gu and Xiao-Gang Wen from the Massachusetts Insti-
tute of Technology in the US have developed another
promising tool, the so-called “Tensor-Entanglement-
Filtering Renormalization approach” with which such
problems can be addressed. However, it remains to be
seen if it will finally break the log jam and lead to a com-
prehensive solution.

The simplest of these problems involve only the spin
operators S; of electrons residing on the sites, i, of a reg-
ular lattice. Each electron can have its spin oriented ei-
ther up or down, leading to a Hilbert space of 2V states,
on a lattice of N sites. On this space acts the Hamilto-
nian
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where the J;; are a set of short-range exchange inter-
actions, the strongest of which have J;; > 0, i.e., are an-
tiferromagnetic. We would like to map the ground-state
phase diagram of H as a function of the Jj; for a vari-
ety of lattices in the limit of N — co. Note that we are
not interested in obtaining the exact wave function of
the ground state: this is a hopeless task in dimensions
greater than one. Rather, we would be satisfied in a
qualitative characterization of each phase in the space of
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the J;;. Among the possible phases are (i) a Néel phase,
in which the spins have a definite orientation just as in
the classical antiferromagnet, with the (S;) all parallel
or antiparallel to each other; (ii) a spiral antiferromag-
net, which is magnetically ordered like the Néel phase,
but the (S;) are not collinear; (iii) a valence bond solid
(VBS), with the spins paired into S = 0 valence bonds,
which then crystallize into a preferred arrangement that
breaks the lattice symmetry; and (iv) a spin liquid, with
no broken symmetries, neutral S = 1/2 elementary ex-
citations, and varieties of a subtle “topological” order.

For a certain class of H, the above problem has ef-
fectively been solved using fast computers. These are
lattices for which the Feynman path integral for H can
be evaluated as a sum over configurations with positive
weights; the sum is then evaluated by sampling based
upon the Monte Carlo method. A prominent example of
this solution is the recent work by Lou et al.[2] on a set of
square-lattice antiferromagnets, in which they find Néel
and VBS states.

However, there is a large class of lattices for which the
path integral does not have any known representation
with only positive weights. The Monte Carlo method
cannot be used here—this is the famous sign problem.
An important example is the model on the triangular
lattice, with nearest neighbor couplings | and ]/ as il-
lustrated in Fig. 1. This model is of experimental impor-
tance: the organic insulators X[Pd(dmit),], are modeled
by a range of values of J//] as X is varied over a series of
monovalent cations [3], and Néel, VBS, and a candidate
spin liquid phase have been discovered.

The sign problem has effectively been conquered in
one dimension, by the density matrix renormalization
group (DMRG) [4]. DMRG carries out a variational
optimization over a smartly chosen set of states, the
so-called matrix product states (MPS), to represent the
ground state with exponential accuracy at only a poly-
nomial cost. In recent years, ideas from quantum infor-
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FIG. 1: Distorted triangular lattice representing the geometry
of systems studed experimentally in Ref. [3].

mation theory have been particularly influential in pro-
viding a deeper understanding of the success of DMRG
and spawning an intense effort to discover a general-
ization that works in two and higher dimensions. The
ground states of models like H have subsystems with
an entanglement entropy that scales with the bound-
ary area (the boundary in one dimension is one lat-
tice site and does not scale with system size, explaining
why DMRG works), and methods have been devised
that restrict the numerical sampling to only such states.
There is an alphabet soup of proposals [5], including
MPS, projected entangled-pair states (PEPS), multiscale
renormalization ansatz (MERA) [6], tensor renormaliza-
tion group (TRG) [7], and now the tensor-entanglement-
filtering renormalization (TEFR) of Gu and Wen. These
methods are connected to each other, and differ mainly
in the numerical algorithm used to explore the possible
states. So far no previously unsolved model H has been
moved into the solved column, although recent results
from Evenbly and Vidal [8] show fairly conclusive evi-
dence for VBS order on the kagome lattice, and there is
promising progress on frustrated square lattice antifer-
romagnets [9].

The TEFR descends from the TRG of Levin and Nave
[7]. They consider a rewriting of the spacetime partition
function of H in terms of a discrete field ¢;, which re-
sides on the links of a spacetime lattice (not necessarily
the same lattice as that of ). Then, for a very general
class of H with local interactions, the partition function
can be written as

z= %
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where T is a tensor on the sites of a spacetime lattice
whose components are labeled by the allowed values of
the ¢;. This construction is illustrated in Fig. 2 for the
honeycomb lattice, in which case T is a third-rank ten-
sor, as is assumed in Eq. (2). Note that the sum over ¢;
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FIG. 2: (Left) Representation of the partition function as a trace
over the indices of the third-rank tensors T, with their indices
contracted along the links of the lattice. (Right) A step in the
TRG replacing T by a new tensor S.

corresponds to a contraction of the tensor indices across
each link of the lattice, and Z has all indices contracted
(for periodic boundary conditions).

The key step in the TRG is a coarse-graining of Eq.
(2) to a more dilute lattice, as in any renormalization
group (RG) transformation. In the conventional Wilso-
nian real-space RG, this is done by just summing over
a select subset of the ¢;. However, the TRG is defined
in a way that preserves the virtues of the DMRG in effi-
ciently preserving the local connectivity information for
a variety of neighborhood environments. The important
step is the transformation illustrated in Fig. 2 in which
the tensor T is replaced by a new tensor S with a differ-
ent local connectivity.

The TEFR is an improvement of the TRG that effi-
ciently removes redundant information on local degrees
of freedom that eventually decouple from the long dis-
tance behavior, and are not crucial in characterizing the
quantum state. This is done by a set of “disentangling”
operations during the coarse-graining procedure. The
benefit is a nearly one-to-one correspondence between
the fixed-point values of the local tensor and the iden-
tification of the quantum state. Thus each of the states
(i)-(iv) would correspond to distinct values of the fixed-
point tensor. In particular, Gu and Wen claim that their
method also distinguishes the subtle varieties of topo-
logical order in the different spin liquid states.

So far, Gu and Wen have illustrated their method for
one-dimensional quantum systems. In these cases, their
results are in excellent accord with field-theoretic pre-
dictions and the results of DMRG. It remains to be seen
if they can break the log jam in two and higher dimen-
sions.
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