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Power laws in chess
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The popularity of various chess openings follows a power law distribution, but the exponent depends on the
depth of the opening sequence.
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A confession: I don’t play chess. I just didn’t inherit
the gene—one that seems to be quite common among
Russians—for this game. But even I have heard from my
chess-playing friends about famous opening sequences,
from Alekhine’s defense, to the Zilbermints gambit, and
of course about e2-e4 (the most popular first move in
which the King’s pawn moves forward two spaces). So
I was not the slightest bit surprised to learn that the dis-
tribution of popularity of opening moves in chess has a
long power-law tail, as reported in Physical Review Let-
ters by Bernd Blasius and Ralf Tönjes at the University
of Potsdam, Germany [1]. However, some surprises lurk
in the results.

Finding power laws has now become de rigueur when
analyzing popularity distributions. Long tails have been
reported for the frequency of word usage in many lan-
guages [2], the number of citations of scientific papers
[3], the number of visits (hits) to individual websites in
a given time interval [4], and many more. In all these
cases (including this new one related to chess) the expo-
nent of the distribution is close to −2. That is, the num-
ber of entries (chess openings, words, papers, or web-
sites) with popularity P approximately scales as P−2.
The semi-universal value of this exponent was first no-
ticed by Zipf [2] when he saw the same statistics apply
to such different objects as words ranked by their popu-
larity and cities ranked by their population.

Many scientists proposed simple (and not so simple)
models aimed at explaining the origins of this scaling.
For city-size distribution, the celebrity list of model-
ers includes Paul Krugman [5]—the Nobel Prize win-
ning economist and New York Times columnist. Even
though the laws of population dynamics responsible for
city formation and subsequent growth appear to have
very little in common with rules dictating preferences
in chess openings, all inverse quadratic power-law dis-
tributions became collectively known as “Zipf’s law.”
There is indeed something special about the distribution

P−α , with α=2, since it separates the region with a well-
defined average (α > 2) from that where the average
formally diverges and thus depends on the upper cutoff
(α ≤ 2). Nevertheless, the quest for the universal “first
principles” explanation of Zipf’s law remains elusive.

Apart from establishing yet another example of Zipf’s
law, the work of Blasius and Tönjes goes a long way to-
wards elucidating its origins in the special case of se-
quential games or, more generally, any composite mul-
tistep decision processes (e.g., complex business or po-
litical strategies). These processes are best visualized as
decision trees with multiple choices at each level (Fig. 1).
The number of possible paths on such trees grows expo-
nentially with the number of steps. As a result, even
in the simplest cases the exhaustive enumeration very
soon becomes impossible.

The first important observation made by the authors
is that if one concentrates on the distribution of popu-
larity of opening sequences limited to the first d steps
of the game, it will also be described by a power law,
yet with a nonuniversal exponent αd that linearly grows
with the number of moves. The universal Zipf distribu-
tion with α=2 is recovered only after these d-dependent
distributions are all merged together. The rationale for
such a merger leading to double counting is poorly ex-
plained in the paper. Nonuniversal power-law expo-
nents often implicate multiplicative random walks [6–8]
and this case is no exception. Other examples of power
laws generated by multiplicative random walks include
wealth of individuals [9], stock prices and their draw-
downs (deviations down from the maximum) [10], gene
family sizes expanding by gene duplication [11], and
many others.

One way to calculate the popularity of a particular
opening sequence σ is to notice that every sequential
move i of the sequence reduces the number of games
in the database that open with these moves by a factor
0 < ri ≤ 1 . These factors are the same as branching ra-
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FIG. 1: Chess openings can be described as decision trees,
showing each move and associated branching ratios. This di-
agram shows the three most popular first (d = 1) half-moves
in the 1.5-million-game ScidBase chess database [12] and their
branching ratios. For example, in 45% of the games, white
starts with e4 (King’s pawn to fourth row, in algebraic chess
notation), 35% start with d4 (Queen’s pawn to fourth row), etc.
Each of these moves then have branching ratios to the second
half-move by black (d = 2). Blasius and Tönjes find that for
all games up to d = 40, the opening sequence popularity fol-
lows a Zipf power law with universal exponent nearly equal
to −2, but for small values of d, the exponent is nonuniversal
and depends linearly on d. (Adapted from Ref. [1].)

tios illustrated in Fig. 1. If the total number of recorded
games is N (which is ∼ 1.5 million in the professional
chess database ScidBase [12] used in this work) then the
number of openings starting with a particular sequence
of d moves is given by N(σ)= Nr1r2 . . . rd. The value
N(σ) = 1 serves as an absorbing lower boundary for
this multiplicative process. When a random walker hits
such an absorbing boundary it stops moving altogether.
In the case of chess opening, once the diversity is down
to just one realization, a unique move will be selected
at each subsequent time step and N(σ) will remain at 1
until the end of the game. In the case of standard (ad-
ditive) random walks, a boundary generally gives rise
to an exponential Boltzmann distribution. For multi-
plicative random walks after the logarithmic change of
variables [6, 7], this exponential distribution becomes a
power law.

The exponent αd of the high-popularity tail of the dis-
tribution can be analytically derived for some special
cases of the distribution of ratios ri : ρ(r) ∼ rβ (see
Eq. (6) in the paper of Blasius and Tönjes [1]). Accord-
ing to these calculations, αd linearly increases with the
number of moves d. This is in agreement with the ac-
tual distribution of popularity of chess openings. How-
ever, the empirically measured ρ(r), shown in Fig. 3(a)
of their paper, has a different profile. Surprisingly, it
closely follows the parameter-free distribution ρ(r) =
2/π
√

1− r2. This distribution describes the density of
points on a circle projected onto its diameter.

Blasius and Tönjes offer no explanation for this empir-

ical observation. Qualitatively, this profile of ρ(r) makes
intuitive sense. At every position of pieces on the chess
board, out of many moves allowed by the rules, just one
would lead to the most favorable position for the long-
term outcome of the game. Such moves that maximize
the gradient of “fitness” would be preferentially selected
by skillful chess players (the average rating of players
in the database puts them between the Candidate Mas-
ter and the International Master levels). This selection
would manifest itself in ρ(r) increasing (and possibly
even diverging) as r→1. This divergence is a direct man-
ifestation of players’ skills. Indeed, if I were to play the
game of chess against other equally clueless players, the
shape of ρ(r) defined by our uninformed random moves
would likely to be flatter than that shown in Fig. 3(a) of
Ref. [1].

As a suggestion for future studies, it would be in-
teresting to empirically verify this hunch using player
ratings included in the ScidBase or other less selective
chess databases. In other words, is the distribution of
openings selected by the best players significantly dif-
ferent from that selected by the worst players? Another
observation made by the authors is that the shape of ρ(r)
is independent of the depth of the game d. This indicates
that, at least at early stages of the game, the phase space
of favorable moves does not significantly depend on d.

All these empirical facts summarizing the collective
knowledge of many chess players have implications
for the design of chess-playing computer algorithms.
Thinking about chess has a long and venerable history
in computer science. One of the founding fathers of in-
formation theory, Claude Shannon, has worked on this
topic. In his 1950 paper [13] he outlined two possible
approaches to designing a computer program playing
chess: the brute force strategy, performing the exhaus-
tive evaluation of all possible moves and opponent’s re-
sponses for as many steps as computer power would al-
low. The other strategy is to iteratively select a few of
the most promising moves at every step and concentrate
computer resources on following a smaller number of
more likely paths on the decision tree of the game. The
shape of ρ(r) in Ref. [1] provides an empirical justifica-
tion for this latter strategy that is indeed the one used by
modern chess-playing programs.

During the last decade it became customary to blame
all types of power laws in popularity on linear prefer-
ential attachment mechanisms first used to explain the
Zipf’s law by another Nobel Laureate, Herbert Simon
[14]. According to these models, the high popularity of
certain items is a frozen accident self-sustained by fash-
ion. For example, an initially popular website would
acquire new links at a higher rate than its less popular
cousins, and as a consequence, further increase its visi-
bility. While in certain situations fashion-driven prefer-
ential attachment is likely to be responsible for long tails
of popularity distribution, it is reassuring to know that
it is not the case in chess—a quintessential game of skill.
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