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The idea behind adaptive behavioral epidemiology is that groups and individuals respond to the knowl-
edge of a disease threat by changing their habits to avoid interactions with those who are contagious.
Network-based models take this adaptive behavior into account by allowing the network to “rewire”
its connections.
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Introduction

Epidemics of contagious diseases have the potential to
wipe out entire populations. While medicine is mak-
ing enormous advances in finding ways to treat and cure
many of these diseases, it is perhaps equally important
to develop ways to curtail their spread by disrupting in-
fectious contacts. Effective vaccine distribution, partic-
ularly when resources are scarce, as well as educating
groups and individuals on how to react to the presence
of a disease threat, can radically diminish the chance of
a disease epidemic.

In this respect, epidemic models can be enormously
helpful in understanding the rate at which diseases spread
and how to control them. For these models to be most ef-
fective, however, they have to be able to take into account
that individuals and groups will adapt their behavior as
they gain more information. This is an increasingly rel-
evant factor as radio, television, and the internet speed
up the rate at which people learn about a disease threat
and how best to avoid catching and spreading it further.
If the latest scare over the H1N1 (swine flu) virus is any
indication, people appear to be more conscious than ever
of epidemics. Whether the information that is delivered
by the media is accurate is in itself an important issue,
but regardless, it is clear that in many cases, people will
attempt to reduce their chances of infection by taking ac-
tions to eliminate contact with contagious individuals, or
through available vaccination. This sort of social adapta-
tion on the level of an individual can change the dynam-
ics of the social contact network, which in turn alters the
progression of disease.

Behavioral epidemiology is defined here to be the study
of the effects of social response to the threat of disease.
In this article, we will discuss recent progress in designing
network models that can account for “adaptive behavior”
and tackle the problem of the spread of infectious diseases
in a dynamic population. We start by giving an overview
of simpler models, where the population is assumed to be
homogeneous, and show how to progressively make these

models more complex and realistic: first by considering
that distinct demographics may behave differently, then
that interactions along particular “links” in the network
may change with time, and ultimately, allowing the net-
work itself to “rewire” to reflect the way humans modify
their social contact behavior.
These networks are designed to model the real-world

problem of disease spread, but at their roots are the com-
putational tools developed in the fields of mathematical
biology and statistical physics. The spread of an epi-
demic is often assumed to be a stochastic process, and
just as in a many-body statistical system, it is possible to
find phase transitions. (As an example, the phase tran-
sition, or “threshold,” at which diseases begin to spread
across the entire network is often approached via perco-
lation theory.) For this reason, epidemiological models
rely on progress in solving problems in statistical physics
and, since the models can be tested against real obser-
vations from data, also provide important feedback on
these physics ideas.

Homogeneous spatial modeling

Our understanding of how infectious disease epidemics
evolve in populations has a long and varied history that
dates back to the eighteenth century [1]. Two important
modern developments have helped refine our understand-
ing of disease propagation and the occurrence of disease
outbreaks: the invention of high speed computing, which
can analyze data on large spatial geographic scales as well
as demographic data, and progress in designing models
that more truly reflect human behavior.
Deterministic mathematical models have been used

since the time of Bernoulli [2] to understand the spread
of infectious diseases such as smallpox in large, uniform
populations. These early epidemic models assumed that
the population was homogeneous, meaning it was well
mixed spatially. In this sense, since all individuals be-
haved like the average, the models could be considered
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“mean-field.” Models based on mean-field dynamics de-
scribe infectious transmission from one individual to an-
other via nonlinear mass action terms [3], where a suscep-
tible (S) individual comes into contact with an infectious
(I) individual. Models are named according to how indi-
viduals “flow” within them, such as SIS, in which suscep-
tibles become infected and then again susceptible, or SIR,
where recovered or removed (R) individuals are immune.
Despite their simplicity, these models were able to predict
outbreaks of childhood diseases [4]. In general, however,
deterministic models on uniform populations are not suf-
ficient to account for some of the important stochastic
dynamics that occur in finite populations. These include
extinction, where the infectious population vanishes (as
with smallpox) [5–7], and sustained fluctuations or oscil-
lations [8], where oscillations having random amplitude
persist in small populations. This is often the case for
childhood diseases.

Demographic and spatial model-
ing

Allowing for populations to have some spatial or demo-
graphic structure is necessary to explain other observed
dynamical phenomena, such as traveling waves in single
[9] and multistrain [10] diseases, and recurrent outbreaks
in network models [11]. There are different approaches
to relaxing the assumption that the population is well
mixed and homogeneous, all of which can be applied on
a variety of length scales [12]. For example, a popula-
tion can be broken down by age, gender, or social action.
This may come into play, for example, when in order to
model the transmission of HIV, one considers common
characteristics of people who share needles [13]. The sim-
plest way to handle this spatial structure is to decompose
the population into subpopulations, each of which is con-
nected to a subset of the others (see Fig.1). These con-
nections can be through migration, as when people in one
subpopulation are transported into another by air travel
[14]. Although these models are “coarse grained,” mean-
ing they still average over portions of the population,
they do yield significantly different epidemic dynamics
than homogeneous populations. For example, they can
predict small amplitude, long-period outbreaks in a given
subpopulation [15], as well as fluctuations.

At a much finer level, what are called agent-based mod-
els describe the detailed characteristics of each individual
and how he or she affects the population. The scale of
the population in this type of epidemic model may be as
large as a city or as small as a classroom [16]. As a subset
of agent-based models, contact network models provide
detailed network structure among individuals [17] and
may describe the effect of movement among individuals.
The connections between individuals at this level of de-
tail may change in time as a result of individual motion
and decisions.

FIG. 1: This schematic shows increasingly structured and
complex ways to model the spread of a disease in a population.
Each color represents a disease stage: susceptible, infected, or
recovered. (a) Homogeneous mixing models treat each indi-
vidual at a given disease stage in the same way as the average
of all others at that disease stage. Structure can be added by
decomposing populations into distinct demographic groups
(b), where the spread of a disease will depend on the par-
ticular group. (c) In a contact network model, links connect
individuals while multiscale models (d) involve connections
between subpopulations. (e) Agent-based models can track
individuals in very large populations on the order of cities the
size of Chicago. (Illustration: Carin Cain, after Ref. [12])

These large-scale descriptions of individuals through
contact and/or agent-based models rely on sizeable
databases of social interaction, and may be considered
social computing models. These models are extremely
valuable when studying the effects of changes to parame-
ters, such as when to change a vaccine policy or how much
to increase the length of a school closing [18]. Analyz-
ing the full social computing agent-based models is, in
general, quite difficult because of their large size and the
required computational complexity. For contact mod-
els on a social network, however, some tools have been
developed to understand the population structure, such
as community structure to reveal shared common traits
within a population network [19] and scaling laws to pre-
dict epidemic rate of spread [20].
In almost all of these network models, the epidemic
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propagates on a fixed, or static, network. The advantage
of this is that it is possible to figure out the threshold for
an epidemic to occur given the average properties of the
network, such as the number of connections coming out of
each node (i.e., the node “degree”). A few of the network
models predict oscillations and fluctuations due to ran-
dom transitions on the network. Fluctuations of simple
epidemic models have been simulated on large networks
[21–25].

The epidemic dynamics are typically studied as an SIS
or SIR model, in which the population is large and iso-
lated. Controls based on vaccination have been consid-
ered as well [26, 27] to control the size of the outbreak.
Although most of the epidemic models have fixed net-
work structure, several recent models have considered
epidemics on a network that changes structure dynami-
cally according to rules that do not depend on the epi-
demic status at a node [28, 29]. That is, the contact
structure is time dependent but does not depend on the
infection status of the individuals in the system. We will
next consider networks that adapt to the state of the
system as one of the new trends in epidemic modeling.

Adaptive networks

In general, many of the network models describing out-
breaks consider networks where the links and contact
structure don’t change with time. Yet in the presence
of a natural or man-made biological threat, it is highly
probable that people will change their behavior. Such an
assumption holds if the population of healthy, or sus-
ceptible, individuals knows the existence of infectious
individuals and adapts their behavior to avoid contact
with disease [30]. More frequent hand washing, wearing
a mask when contagious, and self-imposed isolation are
all examples of adaptive behavior in the presence of a
disease. The implication is that not only does the dis-
ease status of individuals change in time, but so do the
contacts. In fact, the change in disease status causes a
change in contact behavior.

We do note that many of the agent-based and mul-
tiscale models take into account distributions of human
motion, thereby causing contacts that are time depen-
dent and heterogeneous. In contrast to the models of a
static network or models with externally applied changes
in structure, a new class of models based on endemic
populations on an adaptive network has been recently
introduced [30]. (For a recent review, see also Ref. [31].)
Changes to the network structure are made in response
to the epidemic spread and in turn affect future spreading
of the epidemic. Here, the important new parameter is
the rewiring rate of the network, which governs changes
in the fraction of susceptible (S) to infective (I) links.
The network alters dynamically when there are contacts
between S and I, and social pressures (the desire to avoid
illness) rewire the contacts, replacing them with nonin-

FIG. 2: The basic components of an adaptive network model
describing disease spread. (Top) The rates at which a suscep-
tible individual becomes infected, an infected individual re-
covers, and a recovered individual becomes susceptible again
are given by p, r, and q, respectively. In an adaptive network
(bottom), the links between individuals at different stages of
the disease can change (rewire) to reflect the fact that, for
example, a susceptible may avoid contact with an infective.
The rate at which the network can rewire is described by the
parameter w. (Illustration: Carin Cain)

fectious contacts (see Fig. 2). In this way, infections
are reduced because infectives become isolated, and a
new phenomenon occurs: for an appropriate choice of pa-
rameters, it is possible to observe a bistability between
the disease-free equilibrium and an endemic state. In
contrast, static networks in a large population typically
predict either a single attracting endemic or disease-free
state.
When modeling adaptive networks, one needs to de-

scribe the disease status of the individual as well as con-
tact behavior for each individual. Both nodes (people)
and links (contacts between people) must be modeled as
functions of time. Suppose we have S, I, and R states
available for each node. If a node in an infected state
is linked to a susceptible node, the avoidance behavior
says the S node should rewire by changing its link to a
noninfectious node, such as an S or R node. Since the
model is a finite population with random transitions be-
tween contacts and states, we assume there is a rewiring
rate at which the new contacts are made probabilistically
[32]. Comparing the model with adaptive social behav-
ior to the fixed contact models, the results are quite dra-
matic. First, new attractors leading to bistability appear
for small rewiring rates [30, 32–34]. (In Refs. [33, 34], SI
links are removed and susceptibles reconnect to randomly
selected nodes, independent of their infection status, but
the results are qualitatively similar.) An example of the
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FIG. 3: Rewiring in an adaptive network affects the rate at
which individuals become infected. On the left, rewiring (bot-
tom left) reduces the fraction of infectious individuals I in a
finite population for a given infection rate p compared to the
case where there is no rewiring (top left). Rewiring also in-
troduces bistable behavior. On the right, rewiring (bottom
right) will also lead to different probability distributions in
the number of connections (the degree) associated with an in-
fective (light grey), susceptible (black), or recovered (dashed).
For example, with no rewiring (top right) all disease stages
have approximately the same probability for a given degree,
but with rewiring, infectives are most likely to have a lower
degree than susceptibles or recovereds. Reprinted from Ref.
[32].

behavior is shown in Fig. 3. In addition, the size of the
fluctuations increases, which may lead to higher proba-
bilities of disease extinction [32].

A complication is the possibility that individuals may
not have full knowledge of their own and others’ infection
status. The presence of asymptomatic infectious individ-
uals can occasionally lead to disease avoidance behavior
being counterproductive [34]. Co-spreading of an epi-
demic and awareness of the epidemic has been considered,
where the network structure was held fixed but the con-
nection strength reduced for nodes that were aware of the
need to protect themselves from the disease [35]. This be-
havioral response increased the epidemic threshold—the
point at which one would say there is an epidemic—and
was most effective when the awareness was transmitted
on the same contact network as the infection.

Vaccination on adaptive net-
works: The road to enhanced ex-
tinction

Almost all diseases exhibit a certain amount of ran-
domness in how they spread, which results in fluctua-
tions in the number of disease cases—say, a time series of
disease cases exhibiting complex, possibly uncorrelated,

local increases in the number of infectives. As diseases
evolve in large populations, there is the possibility that
they will become extinct in a finite time. Extinction oc-
curs when the number of infectives becomes so small that
there is insufficient transmission to keep the disease in its
endemic state. On the other hand, fade-outs are defined
as temporary local extinction, where infections reappear
through reintroduction of the disease. Fluctuations cause
the fade-out or extinct state to be reached in a finite time.
Populations based upon adaptive networks further com-
plicate the problem, since social dynamical situations,
such as disease avoidance strategies, can cause both the
endemic and extinct states to be bistable [30, 32].
A major characteristic of fluctuation-induced extinc-

tion in globally connected, stochastic models for large
populations is the extinction rate. Viewing disease fade-
out as coming from a system far from thermal equilib-
rium, finite population extinction rate laws have been
derived in SIS [36, 37] and SIR [38] models. Recently,
non-Gaussian random vaccination (explained in greater
detail below) has been used to derive enhanced extinction
rates in such stochastic models [7].
Vaccine strategies have also been considered for epi-

demics that spread along networks where the contacts are
static. Targeting high-degree nodes has been shown to
be more effective than random vaccination for scale free
networks [39, 40], small world networks [41], and other
social network geometries [42]. Since targeting the high-
est degree nodes requires full knowledge of the network
geometry, related methods based on local knowledge have
been developed, as in Ref. [43].
Recently, we used a random non-Gaussian vaccina-

tion strategy and found that in conjunction with adap-
tive rewiring, it is extremely effective. We assumed that
pulsed vaccination was a Poisson process with fixed am-
plitude (fraction of susceptibles vaccinated) and a mean
frequency ν of application to the population. Figure 4
compares the effectiveness of a vaccine in a model with
(right) and without (left) network adaptivity. (See Ref.
[44] for details.) To eliminate disease, vaccination should
target susceptibles in the population. Because of the
adaptivity of the network, rewiring leads to susceptibles
with a higher degree on average. Random vaccination
of the susceptible population will automatically tend to
target higher degree nodes and is therefore expected to
be much more effective than when applied to a static
network, where the high degree nodes are likely to be
infectious and not selected for vaccination.

Conclusions and future research

In the presence of a disease—especially those that are
highly publicized—individuals and societies will adapt
their behavior. For example, during the 2002–2003 SARS
outbreak in China, people began washing their hands
more often and wearing masks [45] and those who were
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FIG. 4: Adaptive network models suggest that vaccinations
can be delivered at a lower frequency (ν). The plots show
the average infected fraction I versus ν for no rewiring (left)
and rewiring (right). Two orders of magnitude less vaccine is
needed to suppress infection in the adaptive network [44].

sick sought out health services more frequently [46]. In
the language of networks, these can be considered be-
haviors that, respectively, reduce the effective strength
of links between individuals and change the contact net-
work itself.

New models of epidemics that make use of the adaptive
behavior of the population will be able to make better
predictions of when an outbreak will occur. Preliminary
analysis of the effect of vaccine controls that work syner-
gistically with the rewiring of the contact structure may
indeed lead to better strategies for eradicating diseases.
This may be especially true in the presence of limited
resources. We expect that combining adaptive networks
with other more complex population models will help us
better predict and avoid epidemics. Moreover, we ex-
pect that understanding adaptive responses to a disease
in a population will lead to new research directions and
contributions to the field of behavioral epidemiology.
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