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Researchers have found a way to naturally double the frequency of laser light with an optical microresonator
made from lithium niobate that supports “whispering gallery” modes.
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Resonators are ubiquitous in physics, and recently
much effort has gone into developing optical microres-
onators that offer strong spatial and long temporal con-
finement. The basic principle relies on the fact that
light can be trapped inside a microresonator via contin-
uous total internal reflection. The modes formed in this
manner are also known as “whispering gallery modes”
(WGM), since they are an optical analogy to the acous-
tical effect that was observed by Lord Rayleigh in Saint
Paul’s cathedral in which sounds travel efficiently along
a curved wall [1]. Now, in a paper published in Physical
Review Letters, Josef Fürst, Dmitry Strekalov, Dominique
Elser, Mikael Lassen, Ulrik Andersen, Christoph Mar-
quardt, and Gerd Leuchs from the Max Planck Insti-
tute for the Science of Light (Erlangen), the University of
Erlangen-Nuremberg, both in Germany, the Jet Propul-
sion Laboratory in Pasadena, US, and the Technical Uni-
versity of Denmark report a way to easily generate the
second harmonic of laser light using such resonators [2]
(see Fig. 1).

Optical WGM resonators have a natural “figure of
merit”: their optical quality factor Q, which expresses
their ability to confine light for long amounts of time.
While it has long been known that dielectric particles
exhibit whispering gallery mode resonances, it was the
observation of ultrahigh Q modes that led to optical mi-
croresonators being widely employed [3]. Ultrahigh Q
modes at optical wavelengths were first demonstrated
in 1989 by Braginsky and Gorodetsky [4] in silica micro-
spheres, and remarkably high Q values exceeding ten
billion (109) have been observed. In the last decade, sev-
eral other varieties of ultrahigh Q microresonators have
emerged, which lead to a wide range of new microres-
onator applications in cavity quantum electrodynam-
ics [5, 6], nonlinear optics [7, 8], cavity optomechanical
studies [9], or cavity enhanced sensing schemes. On-

FIG. 1: Schematic of the experiment performed by Fürst et al.
The inset shows the resonator. (Adapted from Ref. [2].) (Illus-
tration: Alan Stonebraker.)

chip silica microtoroids have been discovered [10] that
allowed bringing this Q factor into a chip scale. While
microtoroids and microspheres employ fused silica as
the material of the dielectric, a versatile method to ex-
tend ultrahigh Q to other materials has been developed
by the Jet Propulsion Laboratory in Pasadena, US. By
simply polishing a cylinder blank [11] (such as pure
CaF2 crystals), Q factors exceeding ten billion have been
demonstrated, only limited by residual surface rough-
ness.

In contrast to fused silica, crystalline materials have
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the distinct advantage of being extraordinarily transpar-
ent to frequencies from ultraviolet to the mid-infrared.
In addition, these materials exhibit low mechanical dis-
sipation [12], which make them appealing for optome-
chanical studies. The highest optical finesse (the power
enhancement factor) demonstrated to date is 107[13],
which implies that only 1 µW of power gives rise to 10 W
of circulating power inside the crystalline microres-
onator. Not surprisingly, at such power levels (and due
to the small transverse confinement high intensity), a
rich set of nonlinear phenomena have been observed
in microresonators, for instance, Raman lasing [7], Bril-
louin scattering [14], parametric oscillations [15, 16] and
optical frequency comb generation [17, 18]. A com-
mon feature of these nonlinear oscillations in microres-
onators is their exceptionally low threshold; threshold
levels for nonlinear oscillation are regularly in the sub-
µW regime, values that are traditionally associated with
linear optics. In addition, radiation pressure interac-
tions have been observed in both silica microresonators
[19, 20] as well as crystalline resonators [21], whereby
the mechanical modes of the microresonators interact
with the optical modes. So far, however, most of the
nonlinear optical studies have relied on silica or crys-
talline resonators made out of materials that lack inver-
sion symmetry and therefore only contain a third-order
nonlinearity.

A natural extension has been the development of res-
onators with a second-order nonlinearity, a necessity
for processes such as frequency doubling of laser light.
Second-order nonlinear materials are particularly inter-
esting from the perspective of quantum optics. The
second-order process annihilates two pump photons
and creates a photon with twice the frequency and hence
twice the energy, which can give rise to optical squeez-
ing [22]. A natural step would hence be to combine
the ultralow-loss optical microresonators with a second-
order nonlinearity to achieve second-harmonic genera-
tion. The paper by Fürst et al.—following pioneering
work at the Jet Propulsion Laboratory [11]—the work
makes a further important step in this direction. The
challenge of making a resonator out of a second-order
nonlinear material was relaxed with the advent of mi-
cropolishing techniques—by polishing a circular blank
(with mm-scale size) of LiNbO3, high Q resonators have
been fabricated whose quality factor (Q of the order of
107) is only limited by the material quality [23]. In or-
der to generate a second-harmonic field, however, phase
matching has to be obeyed.

For phases to be matched, the wave vectors for the
two frequencies have to obey the law of conservation
of momentum. The WGM resemble mathematically the
solutions for the orbitals of a hydrogen atom, character-
ized by an azimuthal, angular, and radial mode num-
ber (as well as a polarization). Just as in the case of
atomic transitions, selection rules apply to, and govern,
the second-order nonlinear interaction. As the optical
modes are angular momentum eigenstates, the second-

order nonlinear interaction requires conservation of the
angular momentum mode number. Hence for a given
pump frequency, this fixes the angular mode number of
the mode in which the second harmonic is converted.
This condition means that the second-harmonic gener-
ation mode must carry twice as much angular momen-
tum as the pump mode, implying that the mode number
of the scattered mode is 2l, when the pump mode has
angular momentum l. This condition can always be sat-
isfied. However, the frequency of the second harmonic
needs to also satisfy energy conservation—if the res-
onator is pumped at frequency ω, the optical mode with
twice the angular momentum (2l) must exist precisely
at frequency 2ω in order for second-harmonic genera-
tion to be able to take place. Due to the small size of
the resonators and the high Q, the latter is enormously
challenging. In the past, phase matching in microres-
onators had been achieved using periodic poling of the
LiNbO3, however, the method relied on accidental fre-
quency matching [23].

The Letter by Fürst et al. takes a much more practi-
cal and reliable route to achieve phase matching. Us-
ing the fact that the crystal has two refractive indices
associated with the ordinary and extraordinary direc-
tion of propagation, which, importantly, exhibit differ-
ent temperature dependence, one can achieve a differ-
ential tuning of the pump mode with respect to the sec-
ond harmonic. This thereby allows continuous tuning
of the relative frequency between the pump and the sec-
ond harmonic until the two satisfy the law of conserva-
tion of energy. In this manner, the authors observe ef-
ficient second-harmonic generation. This method there-
fore opens up to study these phenomena in a reliable
manner.

The implications of this work are manifold. First, the
resonators can serve as efficient doubling cavities, in
particular when combined with efficient tapered optical
fiber coupling. More fascinating, however, is the ability
to generate squeezed states of light. Squeezing of the
pump laser as well as the generated second-harmonic
generation should be possible, which makes compact
sources of squeezed light a tantalizing possibility. While
it is yet not clear if other obstacles such as thermore-
fractive noise [24] may impede such studies, certainly
one aspect is clear: the quest for ultrahigh Q in mi-
croresonators continues to bring new advances in a wide
range of fields, making them even more indispensible in
the future.
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