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A new perspective on strongly interacting fermions emerges from the experimental confirmation of a universal
formula.
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Some of the most vexing present-day problems in
physics center on understanding the many-body prop-
erties and phases of strongly interacting fermions. Part
of the difficulty arises from the fact that while the behav-
ior of interacting fermions is understood in certain well-
defined regions of parameter space, this understanding
often breaks down in the correlated strongly interact-
ing regime. Achieving this understanding of strongly
interacting fermions would have wide-ranging implica-
tions: the systems of interest include high-temperature
superconductors, high-density quark matter, and ultra-
cold atomic fermion gases. The latter is the subject of a
recent experimental investigation by John Stewart, John
Gaebler, Tara Drake, and Debbie Jin at JILA in the US,
appearing in Physical Review Letters[1]. Stewart et al.
succeeded in confirming the validity of certain nonper-
turbative theoretical formulas, known as the Tan rela-
tions [2], which describe the properties of fermions with
short-range interactions. The verification of these rela-
tions shows that cold-fermion experiments are partic-
ularly suited as a testing laboratory for studying the
general problem of strongly interacting fermion systems
[3, 4].

The JILA experiments studied gaseous, trapped
potassium-40 atoms in two different internal states,
spin-up and spin-down (Fig. 1, inset). The effective in-
teractions between these states are experimentally ad-
justable via a Feshbach resonance—a resonance of a
many-body system in which a bound state is achieved
under certain conditions—that can be tuned with a mag-
netic field. For this experiment, the detailed structure
of the Feshbach resonance scattering is less important
than the fact that the s-wave interfermion scattering
length a, characterizing the interactions, can be con-
trolled through a magnetic field B. The scattering length
diverges as a ∝ (B0 − B)−1 near the so-called resonance
position B0. By tuning the external magnetic field close
to the resonance position, one can achieve a divergent

FIG. 1: Schematic plot of the typical momentum distribution
n(k) of a fermion gas with short-range interactions, show-
ing the characteristic behavior of n(k) approaching a constant
value below unity at k → 0 and exhibiting a rapid variation
near the Fermi wave vector kF (that would be a sharp dis-
continuity at T → 0 for a Fermi liquid). At asymptotically
large k, as shown theoretically by Tan and confirmed experi-
mentally by Stewart et al., one has n(k) ∼ C/k4 (characteriz-
ing the fermions as they undergo collisions, seen in the inset),
with the contact C governing thermodynamic quantities like
the total energy of the gas. (Illustration: Alan Stonebraker)

scattering length that is much larger than the interparti-
cle spacing (|a|3n >> 1, with n the fermion density), de-
spite the fact that the effective range r0 of the interatomic
potential is quite small (r3

0n << 1). This has the effect of
realizing the generic and broadly applicable situation of
fermions with large but short-ranged interactions.

The interfermion interactions are also attractive, so
that at low temperatures and for equal densities of the
up and down spin states, the system exhibits superfluid-
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ity analogous to superconductivity in a metal. Some of
the key questions currently being investigated in cold-
atom fermion superfluids are as follows: What is the
phase diagram as a function of the large space of exper-
imentally tunable parameters (including interactions,
temperature, densities of the two fermion spin states, as
well as the spatial dimensionality, which is adjustable
by altering the trapping potential)? How can we ob-
serve these phases of matter in trapped dilute clouds of
atoms? What can strongly interacting cold atoms tell us
about other interacting fermion systems?

A few things are already known about cold-fermion
superfluids, in part by analogy with superconductors,
their much older electronic cousin. For example, for
equal densities of the two spin states (the balanced case),
the system exhibits a superfluid state at low tempera-
ture that undergoes a smooth crossover between a spin-
singlet Cooper-paired Bardeen-Cooper-Schrieffer (BCS)
state, when a is small and negative (for B > B0), to a
Bose-Einstein condensate (BEC) of tightly bound molec-
ular pairs of fermions, when a is small and positive (for
B < B0).

However, away from these well-studied asymptotic
limits the theoretical situation is much murkier. The
ground state of the balanced system is believed to
smoothly interpolate between the BEC and BCS limits
even though the scattering length diverges at B = B0
(called the unitary regime). This divergence frustrates
standard perturbative theoretical approaches in the uni-
tary regime. One simplification is that measurable quan-
tities should exhibit an emergent universality [5] in the
unitary regime, as their dependence on the scattering
length must disappear there. However, this still leaves
the difficult question of calculating these universal prop-
erties when the scattering length is not small.

In 2008, Tan provided novel insight into this diffi-
cult problem in three sequential publications [2], which
present a set of general universal relations that describe
fermions with short-range interactions under a wide
range of conditions, including arbitrary temperature or
densities of the two spin states. Two of these universal
relations are now verified experimentally by the JILA
group. The Tan relations studied by the JILA team re-
late thermodynamic quantities to the fermion momen-
tum distribution n(k) at asymptotically large momen-
tum k (Fig. 1). The fermion momentum distribution sat-
isfies

n(k) =
C
k4 , for k→ ∞, (1)

with C, the so-called “contact,” describing the proper-
ties of such interacting fermions at short distances (i.e.,
as they come into contact with each other, see Fig. 1,
inset). To explain the consequences of this, we will con-
sider Tan’s ”adiabatic sweep” theorem, relating the con-
tact to the variation of the system’s energy E with in-

verse scattering length,

dE
da−1 = −

(
h̄2VC
4πm

)
, (2)

where m is the fermion mass, V the system volume,
and h̄ Planck’s constant. Tan’s derivation of this formula
relies on a novel and somewhat technical mathematical
formalism; however, the same result has been rederived
using other theoretical methods, including the operator
product expansion [6], diagrammatic perturbation the-
ory [7], and also observed in numerical computations
[8].

The basic physics of Eq. (2) can be understood
through an argument made by Tan [2]. Essentially, as
also emphasized in Ref. [9], the true “small parame-
ter” we need is the range r0 of the interfermion inter-
actions, which, in the experiment, is so small that it
can be regarded as vanishing. Since fermions only in-
teract when they occupy the same real-space position
(that is, collide), if we adjust the magnitude of the in-
teractions, altering the scattering length, the shift in the
energy should reflect the probability of fermions occu-
pying the same position, which is given by the contact.
Thus, while the left side of Eq. (2) reflects many-body
correlations, these correlations are completely captured
by this single parameter C.

The adiabatic sweep theorem applies to any two-
component fermion gas with short-range interactions;
however, it is particularly suited for cold atom systems
that can directly control the scattering length. Testing
this theorem involves two tasks: measuring the con-
tact as defined above, and comparing to the variation
of the total energy with the scattering length. For the
first task, impressively, the JILA group measured the
contact in three different ways. Most directly, Stewart
et al. extracted the contact by measuring the momentum
distribution in an expanded cloud after turning off the
trapping potential and the atomic interactions (approxi-
mately, by sweeping to a magnetic field value at which
the scattering length a vanishes).

The other ways Stewart et al. measured the con-
tact involve how this quantity enters other experimen-
tal observables, such as the radio-frequency (rf) spec-
troscopy signal [10] at large frequencies. Briefly, rf spec-
troscopy involves transferring atoms in one of the in-
teracting spin states to an empty noninteracting spin
state. Much like tunneling into an electronic supercon-
ductor, rf spectroscopy probes correlation effects; in par-
ticular, the large-frequency tail of the rf signal (the rate
of atom transfer) varies as 1/ω3/2 with a coefficient pro-
portional to C. This is the second way. Third, the JILA
group has also recently developed momentum-resolved
rf spectroscopy [11] for cold-atom experiments, analo-
gous to electronic photoemission, that also probes the
fermion spectral function, the occupied part of which is
directly related to n(k). The three extracted values of the
contact agreed with each other and with an approximate
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theory that interpolated known results at T → 0 to es-
timate the expected theoretical value of the contact [12],
as plotted in Fig. 2 of Ref. [1].

Here, we must note an important technical detail: The
Stewart et al. experiment involving a fermion gas in a
harmonic trapping potential actually extracted the trap-
integrated contact, as opposed to the homogeneous-
system contact that we have discussed. In this case, the
corresponding energy appearing in the adiabatic sweep
theorem for the trap-integrated contact involves the sum
of the potential, kinetic, and interaction energies of the
gas. Of these, the first contribution is obtained by ob-
serving the spatial extent of the cloud that reflects the
average atom potential energy, while the remaining two
contributions are obtained by measuring the total atom
energy after turning off the trap and allowing expansion
of the cloud.

The sum of these three contributions to the energy ex-
hibits a variation with scattering length in accordance
with the adiabatic sweep theorem, which confirms the
Tan result in the limiting case of a balanced gas at low
temperature across the BEC-BCS crossover. One might
have worried that, since the Tan contact involves the
asymptotic momentum distribution, a real experimental
system may not have a large enough window to ex-
tract it. In practice, however, the asymptotic formula
Eq. (1) was found to set in for wave vectors not much
larger than the Fermi wave vector. Stewart et al.’s sep-
arate measurement of the internal (kinetic plus interac-
tion) and potential energies allowed them to also verify

a second Tan relation, a generalized virial theorem for
a trapped fermionic gas [2]. Thus, while noninteracting
fermions in a parabolic-shaped trap would satisfy the
standard virial theorem equating the kinetic and poten-
tial energies, Tan’s generalized virial theorem for inter-
acting fermions relates the difference between the inter-
nal and potential energies to a quantity proportional to
the trap-integrated contact. With the confirmation of the
Tan formulas, cold atomic fermions are poised to pro-
vide novel understanding of the phases and phenomena
of strongly interacting fermion systems.
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