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Theoretical analysis of parallel layers of ultracold fermionic atoms reveals a rich variety of novel phases that
might offer analogies to phenomena in other areas of physics.

Subject Areas: Atomic and Molecular Physics

A Viewpoint on:
Phases of a bilayer Fermi gas
Yusuke Nishida
Phys. Rev. A 82, 011605 (2010) – Published July 12, 2010

Much of the interest in cold atom traps stems from
their amazing tunability. Systems can be created with
different species of bosons and/or fermions, different
densities and dimensionality, some living in a contin-
uum, and others on an artificial lattice [1]. Even the
strength of the atomic interactions can be continuously
adjusted at will through the use of Feshbach resonances
[2]. Not surprisingly, many of these systems of trapped
atoms are engineered to be analogs of other systems that
are hard to crack theoretically or that cannot be accessed
experimentally. Sometimes the relation between two
models is quantitative, as is the case between neutron
matter at subnuclear densities and a dilute gas of spin-
1/2 fermions near a Feshbach resonance. Other times it
is more of a loose analogy. In either case, these analogs
can provide many useful insights, so the development of
any kind of cold atom system with rich physics is wel-
comed.

In fact, the imagination of theorists and the skill of
experimentalists appear to be on the rise. A recent ex-
ample is described in a paper in Physical Review A by
Yusuke Nishida at the Massachusetts Institute of Tech-
nology, US [3]. The arrangement of atoms he considers
is very simple (Fig. 1). Two spin-polarized fermionic
atoms, A and B, interact through a tunable, s-wave
short-ranged potential. The A atoms are confined to live
in one of two parallel layers separated by a distance d,
created by an optical lattice. Meanwhile, the B atoms
are free to move in three-dimensional space. In the ab-
sence of B atoms, the A atoms are essentially free. They
don’t interact across the layers because they are phys-
ically separated, and the interaction within the same
layer is small since it’s dominated by the smaller p-wave
interaction. However, the A atoms do interact with the
B atoms, and the B atoms can mediate the interactions
between A atoms, even across layers if the distance d is
small enough. This setup is both experimentally feasible
and very rich in terms of physical consequences.

FIG. 1: Parallel layers of fermionic atoms offer rich new
physics. One species of fermionic atoms (A) is constrained to
move only on two thin layers separated by distance d. Another
species (B) is free to move in three-dimensional space. (a) At
large interlayer separation, the A atoms only interact within
a layer as they are dominated by p-wave interaction, forming
a BCS-type pairing as shown by the rotating atoms. (b) If the
interlayer spacing is small, the A atoms will pair up across
layers. (c) If the interaction between A and B species is strong,
they will form “molecules” or (d) three-body Efimov states in-
volving A atoms in each layer and a B atom. (Illustration: Alan
Stonebraker)

The potential generated by the B atom mediation can
be easily calculated, at least in perturbation theory, and
is a steep function of the distance. The resulting inter-
action between A atoms will then depend on two tun-
able parameters, the A-B scattering length aeff and the
distance between layers d. The potential between two
A atoms in the same layer depends on a2

eff; the poten-
tial between A atoms in different layers depends on a2

eff
and also on d.

It turns out that if the parameter 1/aeff is large (in
units of the Fermi momentum) and of either sign, or if
d is small or large, a very reasonable guess can be made
for the qualitative properties of the ground state. To see
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that, let us take 1/aeff to be large and negative. This
corresponds to A atoms with small attraction towards
each other. When d is large, the interaction between dif-
ferent layers is turned off and the ground state will be a
weakly coupled p-wave BCS superfluid [Fig. 1(a)]. But
if d is small, the interaction between the layers will dom-
inate and A atoms in one layer will pair up with A atoms
in the other layer in an s-wave interaction [Fig. 1(b)].

Let us now look at the opposite limit, where 1/aeff
is large and positive. The interaction between A and
B atoms is strong and leads to the formation of tightly
bound A-B atoms [Fig. 1(c)]. The interaction between
these A-B molecules is small, so the A-B molecules Bose
condense when cooled. The A atoms, however, live in a
two-dimensional world and simple entropy arguments
(and a rigorous result, the Mermin-Wagner theorem [4])
show that the continuous phase symmetry cannot be
spontaneously broken as it would in three dimensions.
Instead, we have a low-temperature phase with correla-
tions decaying with a power law, while at high tempera-
tures the correlations decay exponentially with distance
due to the disordering effect of proliferating vortices.
Separating these two phases is the Kosterlitz-Thouless
phase transition [5]. This will happen whether or not
the two layers are close to each other, as long as the dis-
tance d is larger that the size of the molecules.

The difference between these three phases—BEC,
power law correlations, and exponential correla-
tions—is qualitative. Each corresponds to a different
pattern of spontaneous symmetry breaking and their
properties are not analytically connected to each other.
This is unlike the more studied case of the BCS-BEC
transition in the two-species spin-1/2 gas. There, one
has either a weakly coupled superfluid BCS state or a
weakly interacting gas of condensed dimers, depend-
ing on the sign of the scattering length. But the sponta-
neous symmetry-breaking pattern in both cases is iden-
tical and these two states are actually smoothly con-
nected.

There is still one more phase related to the physics
of the Efimov effect [6] that appears in the system for
small interlayer distance. Consider two particles, either
bosonic or distinguishable (they could be different spin
states of the same particle) and let us assume their in-
teraction can be described by a potential with range R.
For weak potentials they will not form a bound state;
for large coupling there will be a deep bound state with
spatial size similar to R. In both cases the low-energy
scattering of one particle into the other is described by
a small scattering length a, either positive or negative,
comparable to the range R. However, for a narrow range
of potential strengths, a bound state (or a virtual bound
state) will appear near zero binding and the low-energy
scattering will be described by a scattering length much
larger than the range R. Since the wave function of this
state is extended well beyond the reach of the potential
it has a universal quality in the sense that it is largely
independent of the precise shape of the potential.

Now, bring a third particle into the system whose in-
teraction is also fine-tuned for two-body bound states
that exist near the threshold. Back in the 1930s, Thomas
[7] showed that the three-particle system would col-
lapse, that is, the ground state would have a size of the
order R and an energy of order −1/MR2. In the1970s,
Vitaly Efimov clarified the situation by arguing that the
Schrödinger equation for the three-particle system, in
the distance range between R and a, reduces to the
Schrödinger equation of a particle in a −1/r2 potential
[6]. This potential is scale invariant and, by itself, does
not have a ground state. Scale invariance is broken at
short distances by R, which stabilized the system giving
the ground state as shown by Thomas, and at large dis-
tances by the scattering length a. In between, one finds a
logarithmic sequence of bound states where each bind-
ing energy is smaller than the next by a fixed numerical
factor (about 515 in the case of three identical bosons of
equal mass). This sequence of shallower and shallower
(and spatially larger and larger) bound states is cut off
when their sizes reach a. In the limit of a going to in-
finity, an infinite sequence of bound states arises. This
is the Efimov effect. In the bilayer system, three-body
bound states appear for small interlayer distance and
large aeff. They are composed of one B atom and two
A atoms, one in each layer, and are analogous to the Efi-
mov states, except that they live in two dimensions. In
this region of parameter space we expect, then, a gas of
fermionic trimers [Fig. 1(d)].

For large or small d and large |aeff|, the phases dis-
cussed above are very likely to occur. What happens
at intermediate values of d and |aeff| is anybody’s
guess and the analytic tools we have available break
down. We can only “easily” understand phases that
are weakly coupled, either because the interaction be-
tween the atoms is small, or because the forces are so
strong that small-sized bound states are formed that in-
teract weakly with each other. In each case, we have a
weakly coupled theory in terms of appropriate degrees
of freedom. Experimental and numerical work will be
necessary to unravel the phase diagram where no such
weakly coupled descriptions are evident.

Many generalizations of the setup proposed by
Nishida naturally spring to mind. For instance, if atom
B is a boson, the Efimov-like three-body bound state is
also a boson and can condense, a mechanism competing
with the condensation of B atoms themselves. What if
two different species B and B’ live in bulk? The physics
of these layered ultracold atomic systems is very rich in-
deed.
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