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Suppressed fluctuations in Fermi gases
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Sometimes experimental noise is actually signal. Two groups have shown how density fluctuations in a gas of
identical fermions can be used as a nanokelvin thermometer.
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Suppose you have a large volume of an ordinary gas
and you examined a small subvolume within it that con-
tains a mean number of particles N. You would expect
that the variance of that number, N2, resulting from re-
peated measurements, is also equal to N. By “ordinary,”
I mean two things. First, the gas is ideal, i.e., composed
of particles with negligible interactions, and second, the
gas is “classical,” i.e., composed of distinguishable par-
ticles. We often refer to this behavior of the variance as
shot noise. A common example of this noise is what we
hear when rain drops hit a tin roof, although in that ex-
ample, N is the number of hits within a time interval,
rather than particles within a sub-volume.

But if the particles are quantum mechanically iden-
tical (that is, are subject to quantum mechanical ex-
change symmetry), the above expectation is incorrect.
Ensembles of identical particles can be either bosons
or fermions and their fluctuation properties are very
different. Most statistical physics textbooks show that
SN? = N + N?/Z, where Z is the number of elemen-
tary phase-space cells occupied by the small volume
Z =AxAyAzApxApyAp./h3, where h is Planck’s con-
stant, and the plus and minus signs refer to bosons and
fermions, respectively [1]. This formula, at least for the
case of bosons, was already demonstrated by Einstein
in 1925 in one of his famous papers on the theory of
the ideal quantum gas [2]. Thus the number of parti-
cles in a small subvolume of a gas will exhibit fluctu-
ations either above or below shot noise, depending on
whether it is composed of bosons or fermions (Fig. 1).
Now, two groups, one at the Eidgendssische Technische
Hochschule (ETH) in Zurich, Switzerland [3], and the
other at the Massachusetts Institute of Technology [4]
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FIG. 1: A schematic illustration of the relationship between
density, density fluctuations, and temperature in a one-
dimensional Fermi gas. The three grids represent a 1D phase
space, with axes x and py. Each box represents a phase-space
cell (with volume = k). At most, one particle is permitted per
box. The density corresponds to the number of atoms per col-
umn. The temperature is related to how the number of atoms
per row decreases with py. A higher temperature means more
population in high momentum states. (a) A cold dense gas.
(b) A cold but less dense gas. (c) A dense but hotter gas. The
density fluctuations (that is, the variance in the number of par-
ticles per column) are lowest in (a). If the absolute density is
known, a measurement of the density fluctuations gives infor-
mation about the absolute temperature. This relationship is
embodied in the fluctuation and dissipation theorem.

in the US have beautifully demonstrated the statistical
properties of fermions by measuring the fluctuations in
ultracold atomic gases.

Most of us heard about this difference in statistical be-
havior of bosons and fermions as students. But many
of us have forgotten it, partly because the phenomenon
is difficult to observe directly. The reason is that in
most circumstances, the number of phase-space cells in-
volved is very large. This suppresses the N term and
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makes the variance look very close to that of a classical
gas. In order to observe such fluctuations in space, it
is important to have a very low temperature since that
will reduce the size of ApxApyAp;. It is also favorable
to have a high density because that means that for the
subvolume in question, N will be large and the N? term
will make itself felt. High density and low temperature
mean approaching quantum degeneracy—a high occu-
pation of the individual phase-space cells. For fermions,
the highest occupation is unity, and indeed, in a Fermi
gas at zero temperature, the number variance vanishes.
The idea is illustrated in Fig. 1.

The work of Torben Miiller and colleagues at ETH
[3] and Christian Sanner and colleagues at MIT [4] has
come close to this ideal, using trapped degenerate Fermi
gases. Thus they have given us a striking illustration of
the fluctuation properties of ideal quantum gases. Both
experiments use optically trapped ®Li atoms. After cool-
ing the cloud to degeneracy, the researchers capture an
image of the atomic clouds on CCD cameras, using res-
onant light. The observation volume corresponds to the
resolution of the imaging system and the thickness of
the cloud along the imaging beam propagation direc-
tion. The number of atoms in this volume is related to
the amount of light detected in the corresponding opti-
cal resolution element. To obtain the variance, the mea-
surement is repeated many times. The experiment is
delicate in part because corrections must be made for
other fluctuating quantities, particularly those due to
the photon shot noise—the same number of atoms does
not always scatter the same number of photons during
a given exposure. It is also desirable to absolutely cal-
ibrate the number of atoms, as will be shown in the
next paragraph. Both papers show the atomic density
as a function of position and of its variance. (The den-
sity varies with position because the clouds are trapped
in approximately harmonic potentials.) For degener-
ate clouds, the densest parts of the clouds show a de-
cidedly smaller relative variance 6N2/N than the less
dense ones. For nondegenerate clouds the relative vari-
ance remains close to unity.

In a slightly more sophisticated interpretation of the
data, one can invoke the fluctuation dissipation theo-
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rem, which relates the fluctuations of a given quantity
to the temperature and the corresponding susceptibility
[5]. The appropriate susceptibility for the density is the
isothermal compressibility. For an ideal Fermi gas, the
compressibility is known, and thus density fluctuation
measurements amount to temperature measurements.
Absolute fluctuation measurements give absolute tem-
peratures. This fact may prove extremely useful in the
future because measuring the temperature of a degen-
erate gas can be difficult. For example, the momentum
profile of a Fermi gas becomes nearly independent of
temperature when the gas is highly degenerate. Fluc-
tuations in a degenerate Fermi gas, however, decrease
linearly with temperature.

As can be seen in the list of references of the two pa-
pers, other examples of exploring fluctuation properties
of low-temperature gases exist—mostly for Bose gases.
Most of these experiments also involved ideal or weakly
interacting gases. An important issue in this field is
the understanding of strongly interacting systems, such
as Mott insulators, Tonks Girardeau gases (dilute 1D
Bose gases in which interactions cause strong anticorre-
lations), paired superfluids (such as the BCS supercon-
ductor phase), and other quantum correlated phases.
The study of fluctuations in these systems is just begin-
ning, and promises to lead to new insights. As we begin
to understand these more complex phenomena, fluctu-
ation measurements could very well end up as the ther-
mometer of choice for further studies.
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