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A new analysis clears some of the remaining hurdles to a completely rigorous density-functional theory for
calculating the properties of materials at finite temperature.
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A recent NSF overview [1] highlights advances in
“creating materials” on the computer, but goes on
to state that “most useful compounds are still dis-
covered by old-fashioned trial and error, guided by
the researchers’ knowledge, experience, and educated
guesses.” However, theoretical materials design is con-
stantly improving, often based on abstract mathemati-
cal constructs, and this is made particularly evident in
a paper in Physical Review B by Helmut Eschrig of the
Leibnitz Institute for Solid State and Materials Research
in Dresden, Germany [2].

The most widely used methods in quantitative mate-
rials design and characterization are density-functional
theory (DFT) developed by Walter Kohn and his collab-
orators [3, 4], and quantum chemistry methods devel-
oped by John Pople [5]. Kohn and Pople were awarded
the Nobel Prize in Chemistry for the year 1988. There
cannot be a more beautiful account of the history of DFT
than the one given by Walter Kohn in his Nobel Prize
lecture [6]. During a sabbatical in Paris in 1963, Kohn
discovered that metallurgists had put a great deal of ef-
fort in mapping the electron density n(r) in alloys and
that they developed certain empirical reasoning based
on these electron density maps. He wondered if elec-
tron density could completely determine the electronic
properties of a material.

The electronic properties of the condensed matter
phase are determined by the Coulomb interaction be-
tween electrons and by the external potential v(r) gener-
ated by nuclei. While the Coulomb interaction remains
the same in all materials, the external potential varies
from one material to another, and so the question filters
down to whether (ignoring electron spin) two external
potentials can generate the same electron density. Pierre
Hohenberg and Walter Kohn, sharing offices at the time,
found a beautiful and astonishingly simple result: two
potentials that differ by more than a constant cannot
produce the same electron density. The electron density

determines v(r), which in turn determines the Hamil-
tonian, which in turn determines all—equilibrium and
nonequilibrium—properties of the system. As Kohn
puts it [6], in principle, we should be able to compute
the 17th excited state of an electron system from an ac-
curate map of the electron density.

Hohenberg and Kohn also established a variational
principle that says that there exists a universal func-
tional FHK[n] (that is, a map defined on a set of functions
that assigns a value to each function), acting solely on
the electron density n(r), such that the ground-state en-
ergy of an electron system is given by (where inf stands
for infimum, or lowest value in a series):

E0 = inf
n

{
FHK[n] +

∫
v(r)n(r)dr

}
. (1)

The practical value of the above finding became even
more apparent in a subsequent paper by Kohn and
Sham [4], who showed that the Euler’s equations (that
is, the expressions that express the variation for the
above minimization problem) can be cast in the form
of a set of nonlinearly coupled one-particle Schrödinger
equations, now known as the Kohn-Sham equations.

There are three important things to note here. First,
the formalism provides a method to compute the
ground-state energy E0 for a given position of the atoms’
nuclei. The configuration in which each atom occupies
its equilibrium position is the one that minimizes E0.
Furthermore, E0 allows one to compute the forces acting
on atoms, which opens the way for first-principles sim-
ulations of the vibrational spectra, chemical reactions,
ab initio molecular dynamics, and so on [7]. Second,
FHK[n]—coined the “divine” functional by Ann Matt-
son [8]—is universal; it works without modifications for
all electron systems. Hence, simple model systems that
can be tracked analytically lead to good functional ap-
proximations. Third, small incremental steps, exactly as
advocated in the original Ref. [3], can lead to accurate
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functionals with broader and broader range of applica-
bility.

In his paper, Eschrig touches on several aspects of
DFT. He reminds us that a functional is not well defined
until its domain—the densities that go into the varia-
tional principle of Eq. (1)—is established. His work
also brings up the issue of nonuniqueness when the spin
plays a role, which is shown to be irrelevant at finite
temperatures. But most important is the claim by Es-
chrig that a finite-temperature functional can be defined
that is differentiable for all densities (and magnetiza-
tions) that come from an equilibrium grand canonical
state. This reassures us that the exact functional does
not have some peculiar discontinuous behavior. (In the
following, I cover these three issues in some detail, so
some readers may wish to skip ahead to the last three
paragraphs if not interested in the technical specifics.)

Originally, FHK[n] was defined on the set AN of den-
sity function n’s that are ground-state densities, that is,
n’s that take the form (where N is the number of elec-
trons):

n(r) = N
∫

dr2 . . . drN |Ψ(r, r2, . . . rN)|2, (2)

with Ψ being the ground state of an electron system.
This set AN can be a very wild set, whose properties
are still very poorly understood. Lieb, in his remarkable
take on the problem [9], discovered that AN is not even
“convex” (that is, a linear combination of n’s that are in
AN may fall outside of AN). As Lieb very graphically
puts it, the space AN has holes in it. This raises seri-
ous problems for any practical variational calculation,
because it can get “stuck” in one of these holes, and, as a
way out, Lieb proposed alternative (convex) functionals,
defined on larger domains that can be explicitly charac-
terized. His tool was the Legendre transform (see Fig.
1), which was also adopted in Eschrig’s work.

The philosophy behind the use of Legendre transfor-
mation is the following. One starts from the ground-
state energy of a many-electron system, which is viewed
as a functional E[v] of the potential v(r). Deciding the
domain of this functional is much easier because we
have two guiding principles for potentials: the many-
body Hamiltonian has to be self-adjoint and it has to be
bounded from below. Note that both these properties
can fail if the real-valued external potential is too singu-
lar, and this restricts the allowed potentials to a precise
set. Once E[v] is set, the density functional is defined via
the Legendre transform of -E[v] (sup stands for supre-
mum, or the maximum value in a series):

F[n] = sup
v

{
−
∫

v(r)n(r)dr + E[v]
}

. (3)

The Legendre transform not only gives the expres-
sion of F[n] but also provides a well-behaved domain
for F[n], which can be explicitly characterized. Now, by
taking a Legendre transform on F (or a double Legen-
dre transform on E[v] ) we are brought back to E[v] and

FIG. 1: The Legendre transform is a valuable tool in classi-
cal mechanics and thermodynamics, and involves mapping
a function of a coordinate to a function of a “derivative” of
a coordinate. In some cases, the transform can be useful in
converting a poorly behaved function into a well-behaved
one. The Legendre transform of a functional f [x] is defined as
f ∗[q] = supx{〈x, q〉 − f [x]}. The diagram exemplifies the con-
cept for a function of single variable. Given a slope q, one de-
termines the maximum value of qx− f (x) shown by the dou-
ble arrows. This maximum value occurs at the point marked
by the arrow, and gives the Legendre transform f ∗(q). If f (x)
is differentiable at the point where this maximum occurs, then
f ∗(q) is given by the intersection point between the tangent
to the graph and the vertical axis, and q = d f /dx. Eschrig
used the Legendre transform to derive new properties of the
density-functional theory for finite temperature applications.

therefore we can write:

E[v] = inf
n

{
F(n) +

∫
v(r)n(r)dr

}
, (4)

which is nothing else but the Hohenberg-Kohn vari-
ational principle. Thus the Legendre transform allows
one to reformulate the variational principle on a (con-
vex) set of densities that can be explicitly characterized
[F[n] as defined in Eq. (3) has additional improved prop-
erties over the FHK defined in Eq. (1)].

Now, if one is to minimize the right-hand side of Eq.
(4) using the corresponding Euler equation δF/δn = 0
(with the appropriate constraints), we first must make
sure that the functional derivative δF/δn (called a
Fréchet derivative) exists at least at the points where
the minimum is achieved (there is a simple example in
Eschrig’s paper illustrating what happens when such
derivative is ill defined). Eschrig notices that this might
be problematic at zero temperature, as one can see by
looking at E[v] itself. In R3, if we squeeze v(r) too
much, the electrons start leaking at infinity, while on the
torus, ground-state degeneracies can occur, both leading
to a bad behavior for E[v]. Eschrig’s key observation is
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that at finite temperatures and finite volumes, the grand
canonical potential Ωβ[v], which takes the role of E[v],
is free of such problems and its functional derivative is
well defined for all allowed v’s. This allows him to con-
clude that Fβ[n], also defined via a Legendre transform
on Ωβ[v], has a Fréchet derivative at all densities that
come from an equilibrium grand canonical state.

Eschrig builds on the seminal work of Mermin [10],
which provided the variational principle for the grand
canonical potential. As in the first paper on DFT, there is
no discussion of Euler’s equation in Ref. [10]. The finite-
temperature Kohn-Sham equations were presented in
the 1965 paper of Kohn and Sham [3], but an explicit
derivation was missing. The reader will find an explicit
derivation and a very instructive discussion of these
equations in Eschrig’s work.

Additionally, when the spin of the electrons is taken
into account, the proper DFT procedure is to couple
them to a scalar potential v(r) and a magnetic vector
field B(r). The goal is to establish a unique correspon-
dence between the density n(r) and magnetization den-
sity vector m(r) on the one hand, and the v(r) and B(r)
on the other. The degree of this uniqueness goes beyond
the trivial additive constant seen in spinless DFT [11].
This may not pose serious problems [12], but it com-
plicates matters. Fortunately, Argaman and Makov [13]
noted that finite-temperature DFT is free of such com-
plications. Eschrig’s work strengthens this view and, in
addition, shows that the minimum of the functional can
be found by solving its corresponding Euler equation,
which can be cast in the form of the Kohn-Sham equa-
tions.

What does all this have to do with materials design
and characterization? While DFT is, in principle, ex-
act, in practice we have to rely on approximations. The
available approximations have had a tremendous suc-
cess in various applications, but there are still special
classes of materials where their performance is rather
poor. It is natural to ask if the current philosophy in
functional development, relying on expansions around

reference systems such as the uniform electron gas, will
ever work for these special classes of materials. The
search for the ”divine” functional, which presumably
will allow scientists to sit at computers and design mate-
rials with predefined properties, could be greatly aided
if we understand its general mathematical structure. But
is the exact functional plagued with discontinuities that
are too difficult to tackle? Eschrig’s work assures us
that this is not the case, that in fact, the functional is
smooth, at least for finite temperatures and volumes.
The expansions of the density functionals around ref-
erence systems are not limited by singularities and are
very likely to work. Eschrig’s analysis also points to an-
other strategy for functional development based on an
expansion around the high-temperature limit (a sort of
1/T expansion). The analysis also provides a new test to
assess the quality of an approximate functional. At last,
given the smoothness of the functional, the transition
from the variational principle to the Kohn-Sham equa-
tions can now be discussed in a much healthier mathe-
matical framework.
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