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Viewpoint

A defect controls transport in graphene
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A line defect that seems to naturally form in graphene grown on a nickel substrate may provide additional
control of transport characteristics.
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The field of spintronics, which uses the spin of an
electron besides its charge as a carrier of information
in electronics, has seen much theoretical and experi-
mental progress over the last decades [1]. The spin de-
gree of freedom interacts less with its environment than
does the charge degree of freedom. Hence spin-based
electronics may have some advantages—less dissipation
of power, for example—over charge-based ones. Since
spin is the intrinsic angular momentum of an electron,
found in each and every electronic system, the efficacy
of a specific material for spintronics depends on how
well it can control and store spin.

Can we find additional degrees of freedom—similar
to the electron spin—as alternative carriers of informa-
tion? The answer is yes. For instance, graphene, in
which carbon atoms are arranged in a two-dimensional
honeycomb lattice, has two pseudospin degrees of free-
dom in addition to the electron spin. These pseudospin
degrees of freedom behave in a mathematically similar
way to the electron spin, i.e., they act like additional
intrinsic angular momenta of the electron. The pseu-
dospins are both related to the peculiar band structure
of graphene, shown in Fig. 1. One is called sublattice
pseudospin and the other valley isospin. The former oc-
curs due to the bipartite honeycomb lattice, which has
two distinct sublattices. Whenever the direction of mo-
tion of the electron changes, the sublattice pseudospin
also has to change and realign to the new direction of
motion [2]. Therefore it is vulnerable to disorder and ap-
parently not useful as a carrier of information. In this it
differs from the valley isospin, which distinguishes be-
tween the two independent valleys in the band struc-
ture of graphene, commonly called K and K′, see Fig. 1.
The valley isospin is more robust against disorder than
the sublattice pseudospin as it needs a large momentum
transfer (on the order of the inverse lattice spacing of
graphene) to scatter from K to K′. This offers the possi-

FIG. 1: Electronic dispersion of graphene. The conduction
band and the valence band touch each other at six discrete
points. These points are called K points. The six points can be
divided into two in-equivalent sets of three points each. The
points within each set are all equivalent because they can reach
each other by reciprocal lattice vectors. The two in-equivalent
points are called K and K′ and form the valley isospin de-
gree of freedom in graphene. The name valley isospin stems
from the similarity of the vicinity of these points with a val-
ley. The zoom shows that the dispersion relation close to the K
points looks like the energy spectrum of massless Dirac parti-
cles. (Credit: A. H. Castro Neto et al.[2])

bility of developing valleytronics devices that are similar
in concept to spintronics devices.

A seminal paper [3] in 2007 came with a proposal
for using the valley degree of freedom as a carrier of
information. Its authors analyzed a valley filter and
a valley valve based on a graphene nanoribbon with
zigzag edges. In a valley filter, the idea is that a par-
ticle with a given valley degree of freedom, say K, is
transmitted, and a particle with the opposite valley de-
gree of freedom is reflected. The device proposal in
Ref. [3] is based on a graphene nanoribbon cut along
a high symmetry axis of the honeycomb lattice (called a
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FIG. 2: A schematic of the proposed valley filter. An incom-
ing electron (with angle of incidence α) approaching a line de-
fect in graphene having components in both valleys K and K′
transmits the defect, for instance, preferentially in valley K for
a large angle of incidence, whereas the component in K′ will
be reflected in a specular way. This effect could be used to pro-
duce a valley-polarized current out of an unpolarized stream
of electrons. (Credit: Alan Stonebraker)

zigzag edge). For this device to work, it is ideal to have
a graphene nanoribbon with zigzag edges because the
lowest transverse mode of such a nanoribbon is known
to be valley-polarized [4]. This is a special property of
the zigzag edge. Interestingly, it can be used to intro-
duce a valley polarization in graphene, meaning that
an outgoing stream of particles would contain electrons
having preferably one of the two isospin degrees of free-
dom. Even though this work stimulated a consider-
able amount of interest in finding ways to manipulate
the valley isospin (a nice example is the valley Hall ef-
fect [5]), none have been experimentally realized. At
the moment, narrow graphene nanoribbons with per-
fect zigzag edges do not exist, although unzipping nan-
otubes may be a possibility [6].

In a paper in Physical Review Letters[7], Daniel Gun-
lycke and Carter T. White from the US Naval Re-
search Laboratory propose a valley filter in single-layer
graphene that does not rely on either quantum confine-
ment or any specific type of edges. The valley filtering
is created—see Fig. 2 for a schematic of the proposed
setup—at an extended line defect that is a periodic se-
quence of octagonal and pentagonal sp2-hybridized car-
bon rings. This defect was recently observed [8] in
graphene on a nickel substrate.

The whole structure (graphene with a one-
dimensional topological defect) is mirror-symmetric
with respect to the axis defined by the line defect. This
reflection symmetry is key to why the line defect works
as a valley filter. Let us first describe the working
principle of the valley filter and get back to the sym-
metry argument below. Gunlycke and White analyzed

the transmission probability across the line defect for
an incoming electron as a function of the angle of
incidence. They showed that the valley polarization
P = PK − PK′ , where Pm(m = K, K′) is the probability
that a transmitted electron has valley index m, can be
approximated by sin α. Here, α is the angle of incidence
with respect to the normal of the line defect, see Fig. 2.
Hence the line defect acts like a perfect valley filter for α
close to π/2. The authors claim that this effect is robust
against certain perturbations like interactions across the
line defect and potentials on the line defect and their
neighboring sites. Therefore angle-dependent transmis-
sion measurements across such a line defect might in
fact be an option for an experimental realization of a
valley filter.

How can we understand the performance of this val-
ley filter device, based on symmetry arguments? Gunly-
cke and White argue that in the limit of vanishing quasi-
particle energy ε → 0 (i.e., directly at the Dirac point in
graphene, see Fig. 1), the reflection operator about the
line defect commutes with the following three Hamil-
tonians: (i) Hm(m = K, K′) representing graphene (for
a given valley m), (ii) the Hamiltonian of the isolated
line defect, and (iii) the Hamiltonian representing the
interaction between graphene and the line defect. Con-
sequently, the eigenstates of Hm are either symmetric
(|+〉) or antisymmetric (|−〉) with respect to reflection.
The incoming state approaching the line defect is, for
generic α, a superposition of |+〉 and |−〉. Since only
symmetric states can carry electrons across the line de-
fect, one can estimate the transmission probability of a
quasiparticle with valley index m by projecting the in-
coming state on the symmetric (|+〉) component. This
analysis yields P = sin α, as stated above. Although the
symmetry arguments are strictly valid only at ε→ 0, the
authors show by a more elaborate numerical transport
calculation that the result remains true for finite quasi-
particle energies ε, as long as ε � hvF/(2πa) (which
corresponds to the large energy of 2.3 eV; a is the lattice
constant and νF the Fermi velocity of graphene).

Can valleytronics ever compete against spintronics?
We remain a bit skeptical. Although scattering from K to
K′ calls for a large momentum transfer, it may still hap-
pen in realistic graphene devices. The reason is that the
edges of the graphene flake or adatoms that stick to the
surface can provide sharp enough scattering potentials
to mix K and K′. Once K and K′ are mixed, the perfor-
mance of the valley filter will be altered. A big advan-
tage of the proposal by Gunlycke and White based on
the line defect observed in Ref. [8] is that it should suffer
much less from this type of disorder compared to previ-
ous proposals based, for instance, on edged graphene
nanoribbons.
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