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A spin model on a honeycomb lattice points to a much sought after type of quantum spin liquid: the
Bose metal.
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In a quantum spin liquid, the ground state neither has
long-range magnetic order nor does it break any spatial
symmetry. Quantum fluctuations—analogous to thermal
fluctuations in a classical liquid—can destabilize ordered
crystalline phases to produce this exotic phase of mat-
ter. Quantum spin liquids are of particular interest as
they violate conventional wisdom about condensation of
matter as one approaches zero temperature, e.g., to a
superconducting phase. Since quantum fluctuations in-
crease in strength as the dimensionality of the system
is decreased, the search for quantum liquids has largely
occurred in dimensions smaller than three.

There is ample evidence—quantum Hall edge states [1],
for example—for quantum liquid behavior in one spatial
dimension, and there are general arguments that show
that extended gapless phases—where the energy gap be-
tween the ground state and the first excited state van-
ishes—can emerge in higher dimensions because of quan-
tum criticality, i.e., in parameter regimes where two or-
dered phases compete to suppress each other (Fig. 1).

Of particular interest is the case of gapless spin liquids.
Two classes of gapless spin liquids have been identified,
which can be distinguished by the extent of their zero-
energy hypersurfaces in reciprocal space [2]: (i) algebraic
spin liquids, for which the elementary excitations are not
described by free fermions or bosons, and spin correla-
tions have a finite set of singularities at discrete values
of momentum; and (ii) spin Bose metals, whose elemen-
tary excitations are described by free bosons, with spin
correlations that are singular along an extended surface
in momentum space. This “Bose surface” is reminiscent
of the Fermi surface in conventional metals, except that
it can be tuned by parameters of the Hamiltonian, even
at fixed particle density. Despite their thorough classifi-
cation [3], robust examples of extended quantum liquid
phases in higher dimensions have been elusive. Much

FIG. 1: Extended quantum spin liquid regime emerging from
quantum criticality due to the competition of two ordered
phases. (APS/Alan Stonebraker)

work has been done in constructing examples, such as
ring-exchange models [4], but these do not appear to be
easy to realize experimentally. This seems to suggest that
entropy in nature tends to select ordered states in higher
dimensions, even in the presence of strong quantum fluc-
tuations.
Nonetheless, in a study reported in Physical Re-

view Letters[5], Christopher Varney of the Joint Quan-
tum Institute at the University of Maryland, College
Park, and Georgetown University, Washington D.C.,
and his colleagues present a convincing example of a
Bose metal phase in two dimensions. The authors use
techniques in numerical diagonalization to examine the
zero-temperature phase diagram of the frustrated spin-
1/2 XY model on a honeycomb lattice (see Fig. 2).
Monitoring the ground-state fidelity metric, a useful the-
oretical tool borrowed from quantum information theory
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FIG. 2: Illustration of a classical spin configuration on a hon-
eycomb lattice. (C. N. Varney et al.[5])

[6], and the energy of finite clusters as a function of the
competing antiferromagnetic nearest-neighbor and next-
nearest-neighbor couplings, the authors identify three
quantum phase transitions that separate four phases.
The ratio of the competing antiferromagnetic couplings
corresponds to the frustration of the system, which here
serves as the tuning parameter that governs the phase
diagram (akin to the x axis in Fig. 1). Furthermore,
the behavior of the condensate fraction in each of the
four regimes identifies three of these regimes as ordered
phases, corresponding to quantum renormalized versions
of classical spin configurations (i.e., where the spins are
perturbed, but not destroyed, by quantum fluctuations),
while the phase with a vanishing condensate fraction is
consistent with a quantum spin liquid [7].

Studying the momentum distribution functions in the
ordered phases provides experimentally verifiable evi-
dence for spinon condensation at various points in the
Brillouin zone. For example, at small frustration the con-
densate is a simple antiferromagnet, whereas at very large
frustration it corresponds to the collinear spin configura-
tion depicted in Fig. 2. As the spin-1/2 XY model can
be mapped to an equivalent model of hard-core bosons,
these ordered phases correspond to Bose condensates at
distinct ordering wave vectors. As an interesting aside,
Varney et al. noted that in some of the condensates more
than one single-particle state is occupied.

The main result of Varney et al.’s study, however, is
the finding of an extended quantum spin liquid phase.
This regime features a Bose surface with a wave vector
that is tunable by the frustration of the model. This
particular feature in the momentum distribution function
is a defining characteristic of a Bose metal, and would
thus serve as a key observation in an experimental study.

The simple XY model, less prone to the singlet for-

mation that would tend to stabilize valence bond or-
der, i.e., a spatially frozen dimer decoration of the un-
derlying lattice, is arguably a better candidate for such
quantum spin liquid behavior than the Heisenberg model.
Consider, for example, the frustrated Heisenberg model
on a square lattice, with competing antiferromagnetic
interactions between nearest-neighbor and next-nearest-
neighbor spins, a familiar system in condensed matter
physics that has been a contender for exhibiting an ex-
tended quantum spin liquid regime [8]. The numerical
evidence in favor of a gapless quantum spin liquid phase
is much less clear cut in this case because of the pres-
ence of competing valence bond crystal order, which is
difficult to study with available numerical techniques.
The ultimate experimental verification of this Bose

metal phase in the spin-1/2 XY model on a honeycomb
lattice will probably hinge on an implementation that
uses cold atoms trapped in optical lattices, i.e., relying
on a mapping of the spin system to an equivalent model of
interacting hard-core bosons. In the past few years, this
technology has become a reliable emulation tool for quan-
tum many-body lattice systems with tunable interactions
[9]. Bose metal phases are also expected to occur at the
interface between superconducting and insulating phases
in quasi-two-dimensional films [10]. In this case, disorder
in the phase of the superconducting order parameter is
expected to lead to a specific type of phase glass that
coexists with a bosonic metallic channel. However, it is
not yet clear whether there is any connection between
the phase glass scenario and the microscopic model stud-
ied by Varney et al. Nonetheless, the condensed matter
community should be excited to finally have access to
a straightforward quantum many-body system that ex-
hibits a Bose metal phase.
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