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A new electrostatic levitation study clarifies how the strings and clusters of atoms that appear in a
cooling molten liquid affect diffusion.
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Two quantities largely determine liquid dynamics: vis-
cosity and the diffusion coefficient. Viscosity η is a
macroscopic measure of the resistance of the fluid against
shear deformation, and the diffusion coefficient D mea-
sures the long-range atomic motion. At temperatures
far from the freezing point, they are connected by the
Stokes-Einstein relation (SE), which holds if the fluid is
sufficiently above the liquidus temperature. However, a
variety of studies have found that the SE relation is not
adequate to describe liquids closer to the glass. One im-
portant unresolved question has been how far one can
cool down before the SE relation breaks down. Now,
writing in Physical Review Letters, Jürgen Brillo and
coauthors from Deutsches Zentrum für Luft- und Raum-
fahrt, Germany, show that the Stokes-Einstein relation
not only breaks down at much higher temperatures than
anticipated, but also gives the wrong temperature de-
pendence [1]. These results suggest that great caution is
needed when the SE relation is used to express diffusiv-
ity in terms of viscosity, or vice versa, and that a new
description needs to account for the correlations between
the motion of single atoms.

Shear viscosity, usually simply called viscosity, is a
macroscopic measure of the resistance of a fluid against
deformation by a shear-keeping laminar flow. Accord-
ing to Stokes law, when a sphere of radius R is dragged
with velocity v through a liquid with viscosity η, a force
f = 6πηvR is needed. Using linear response theory, the
Stokes-Einstein relation can be derived [2]. In equilib-
rium, the concentration of such spheres is given by Boltz-
mann’s formula c(r) ∝ exp(−U(r/kBT )). Taking f(r) =
−∇U(r), the concentration gradient is given by ∇c(r) =
f(r)c(r)/kBT . Equilibrium requires that the current of
particles due to the external force is canceled by the diffu-
sive current jeq(r) = 0 = −D∇c(r) + c(r)f(r)/(6πηR).
Solving for D, the Stokes-Einstein relation [3] between

viscosity and diffusion coefficient results:

Dη =
kBT

6πR . (1)

It is valid for the diffusion of uncorrelated macroscopic
spheres in a liquid. Treating the motions of the solvent
atoms as uncorrelated, the SE relation is applied to the
diffusion of single atoms or molecules. At sufficiently
high temperatures, the SE relation holds well and many
textbooks give it as a recipe to derive D from η and
vice versa. While some experimental variability has been
observed, discrepancies of up to 20% can be absorbed in
an effective hydrodynamic radius, RH , and a reduction
of the factor 6 in the denominator, which is equivalent to
assuming there is some surface slip [4].
However, when the liquid is cooled, the atomic mo-

tion gets more and more correlated and the SE relation
will eventually break down. In the absence of accurate
measurements of η and D, it was assumed that the rela-
tion will hold above the critical temperature Tc, a critical
temperature obtained from mode coupling theory for un-
dercooled liquids [5]. This theory is designed to describe
the decay of correlation functions on time scales much
larger than the picosecond scale of atomic collisions or
vibrations. This slow decay is given by a memory func-
tion, which is written in terms of the static structure
factor. Since the structure factor is an average over all
atoms, it is a mean field theory. Nevertheless, the theory
is able to describe or predict a large number of glassy
properties of undercooled liquids and can be extended to
more complex systems. Cooling to Tc, which is typically
about 30% higher than the glass transition temperature,
fluidlike motion is thought to freeze out, following scaling
laws D ∝ η−1 ∝ (T − Tc)γ , with γ > 0 a material de-
pendent exponent. In real systems, thermally activated
hopping becomes the dominant mechanism for diffusion.
In contrast to the conventional wisdom, computer sim-
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ulations have pointed to a breakdown of the SE rela-
tion at much higher temperatures, examples of which
are given in the article by Brillo et al.[1]. Experimen-
tal validations of the SE relations, so far, have suffered
from using different samples that were held under dif-
ferent conditions for the measurements of D and η. A
particular problem has been the influence of the contain-
ment. In the electrostatic levitation technique, a droplet
of liquid metal is held in position by a suitable static
field, thus eliminating the container problem. Using this
technique, Brillo et al.[1] have measured both η and DNi
in liquid Zr64Ni36 to a high precision over a tempera-
ture range of 800 K. As expected, they find that the SE
relation somewhat underestimates the diffusivity. More
importantly, and representing a real challenge to theory
and experiment, they find

DNi(T )η(T ) ≈ const, (2)

in striking contrast to DNi(T )η(T ) ∝ T , which is what
is predicted by the SE relation. The relation found by
the team is seen in mode coupling theory near Tc, but
this does not explain why D(T )η(T ) ≈ const still holds
500 K above the liquidus temperature TL. Therefore, a
basic assumption in the derivation of the SE relation at
any temperature is shown to be violated, and correlations
between the atomic motions persist even at very high
temperatures.

Deviations from the SE relation have also been found in
previous studies. In diffusion experiments and in simula-
tions of metallic glasses [6], results point to collective pro-
cesses both in the glass and the melt. If an atom diffuses
through a rigid lattice, its diffusion coefficient is inversely
proportional to the square root of its mass, D ∝ 1/

√
m.

This holds approximately for the diffusion via vacancies
in crystals. In contrast, by changing the mass of a tracer
atom (i.e., by using a different isotope) it was found that
in both glasses and supercooled melts the diffusion coeffi-
cient of the atom is nearly independent of its mass. This
“vanishing isotope effect” indicates a collective motion of
ten or more atoms [7] in the melt. Computer simulations
show cluster and string structures moving through the
melt, as seen in Fig. 1. A recent simulation of diffusion
in CuZr showed that DNi(T )η(T ) ≈ const up to 200 K
above TL. At higher temperatures, diffusion followed the
SE behavior [8]. This switchover on cooling is related
to the onset of a regime of collective motion of strings
or chains of atoms. Instead of individual atoms moving
through the melt, as is assumed in Stoke’s law and the
SE relation, groups of atoms move together. This is ac-
companied by large variations of the mobility of different
atoms at any given time. It is similar to the behavior of a
dense crowd of people, where the strings resemble small

chains of people threading their way through the slowly
moving mass. These “annoying” people get ahead much
faster and fill any small gap opening.
The collectivity of motion invalidates the assumptions

made in the derivation of the SE relation, but a theory
that explains the observed DNi(T )η(T ) ≈ const at high

FIG. 1: Atoms in a melt of Cu33Zr67, forming chains and clus-
ters. Shown are Cu (yellow) and Zr (blue) atoms. (APS/Alan
Stonebraker, adapted from [9])

temperatures is outstanding. The question of how chain
motion interacts to create viscous flow is unsolved. The
results of Brillo et al. show we have much to understand
about how the motion of atoms in dense liquids affects
their macroscopic properties.
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