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Few mathematical tools exist for describing non-equilibrium systems, but new methods may emerge
from the study of a simple transport model.
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Imagine a tall column of gas that has been resting on a
table for several days, at a fixed temperature and isolated
from any exchange of particles or heat with the outside
world. A fact familiar to students learning the statistical
properties of an ideal gas in a gravitational field is that
the density of the gas falls off exponentially from the
bottom of the column to the top.

In the real world though, equilibrium states like the
column of gas are more the exception than the rule. Sys-
tems do interact with their environment and some of the
most interesting ones are time-dependent (transient), like
the current following a capacitor discharge, or in a steady
state, like the current in a battery-driven circuit. Yet all
the tools of statistical physics that allow us to start with a
microscopic picture and calculate macroscopic and ther-
modynamic quantities, such as the density distribution
of particles, entropy, or free energy, assume the system
being described is in equilibrium. Nonequilibrium sys-
tems can be studied numerically, but despite decades of
research, it is still very difficult to define the analytical
functions from which to compute their statistics and have
an intuition for how these systems behave.

In Physical Review Letters, Mieke Gorissen at Has-
selt University, Belgium, and colleagues report an im-
portant contribution to building a statistical theory for
nonequilibrium systems [1]. They have analytically de-
rived the functions that describe (exactly) the steady-
state transport of particles and its statistical fluctuations
for the most general form of the so-called asymmetric
simple exclusion process (ASEP) [2], a widely used one-
dimensional toy model that has been applied to the study
of traffic and molecular transport. Their results pro-
vide a framework for relating microscopic descriptions of
nonequilibrium systems to macroscopic approaches, such
as the so-called “fluctuation theorems” [3].

Nonequilibrium systems are usually characterized by
the presence of a current, which is associated with the
motion of particles or energy carriers. However, even
when these systems evolve to a steady state, their dy-
namics can be complex, with anomalous properties and
statistical fluctuations dominating the average behaviors.
For example, we still have to build a microscopic theory
for how heat diffuses in a nanoscopic wire, such as a car-
bon nanotube placed between two thermal reservoirs at
different temperatures: the Fourier’s law that describes
heat transfer in a normal wire fails at the nanoscale.
To calculate the statistics of an equilibrium system, we

use the Boltzmann-Gibbs formulation, which counts each
available state and its energy, ε, and gives it a statistical
weight proportional to exp(−ε/kBT ). If a similar way
to count states existed for nonequilibrium systems, we
would be able to compute quantities like the free energy,
predict different thermodynamic phases of nonequilib-
rium matter, or understand how systems respond to per-
turbations (with local or collective and long-range fluc-
tuations). From a purely fundamental perspective, it is
interesting to ask if a universal formalism can even exist
for nonequilibrium systems.
One approach to finding such a formalism from micro-

scopic laws is to study simple models that capture the
essence of a nonequilibrium system, but are still math-
ematically tractable. A favorite type of model is the
“driven lattice gas,” where an external field biases the
motion of particles along a lattice, or the particles them-
selves exploit some source of energy to move. These mod-
els have been applied to the study of pedestrian and car
traffic [4, 5] and motor protein transport [5]. They can
also describe the dynamics of granular and glassy mate-
rials.
Among driven lattice gas models, the asymmetric sim-
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FIG. 1: The asymmetric simple exclusion process is a toy
model for describing nonequilibrium behavior. (Top) The
model in the abstract. In an infinitesimal time window, a
particle located on any one site hops to a site to its right with
rate p, and to its left with rate q, provided these sites are
empty. The lattice can exchange particles with the outside
world, with particles entering or leaving the left end of the
chain with rates α and γ, respectively, and entering and leav-
ing the right side of the chain with rates δ and β, respectively.
(Bottom) The model can be used to study protein “traffic”
along a filament. In the case shown here, q, γ and δ are equal
to zero. (APS/Alan Stonebraker)

ple exclusion process (ASEP) [2] is considered the most
instructive prototype because of its simplicity. (Histori-
cally, the model was developed to describe the ribosomal
activity along messenger RNA that leads to the synthe-
sis of proteins.) The ASEP assumes that particles move
along a discrete chain of length L (Fig.1), and that each
particle can hop to the left or the right (not necessarily
at equal rates), only provided these sites are empty. If
this lattice is “open,” it can exchange particles with an
infinite reservoir of particles on either end of the chain.

What makes it mathematically challenging to study
an ASEP is that the average occupancy of particles on
the ith site, 〈ni〉, depends on higher correlation functions
like 〈nini+1〉 that in turn depend on 〈nini+1ni+2〉 and so
on. One ends up with an infinite hierarchy of nonlinear
equations that are very difficult to solve exactly.

Advanced mathematical methods or model-specific ap-
proximations are therefore necessary to get a solution ei-
ther of the so-called “master equation,” which describes
the time evolution of the probability distribution of one
microscopic configuration via all possible transitions be-
tween the 2L configurations of the system, or to build
a “generating function” which allows all the correlation
functions (statistical moments and cumulants) of the
stochastic process to be computed. So far, researchers
have been able to solve, exactly, for the average steady-
state density and current [6, 7], but for the last few
decades, they have been searching for the analytical func-
tions that give the full statistics of the current. These
statistics, or cumulants, describe the standard deviation
of the current fluctuations, their asymmetry, and so on.
Knowing them is practically equivalent to knowing all
possible states of the system and their corresponding sta-
tistical weight.

In a mathematical tour de force, Gorissen et al. have

overcome this hurdle. They present an elegant solu-
tion for building and computing the cumulant generat-
ing function of the current fluctuations in the stationary
state for any system size L with open boundary condi-
tions. In other words they invented a method to count
exactly all possible statistical fluctuations of the current
in the steady state. To do this, the authors generalized
a powerful method called the “matrix product ansatz”
(which resembles the matrix operators that act on bra
and ket states in quantum mechanics) [6, 7] and relate
their results to the large deviation functional of the cur-
rent and its cumulant generating function. These func-
tionals, emerging from probability theory [3, 8], are se-
rious candidates for generalizing the Boltzmann-Gibbs
formalism to nonequilibrium systems and show that the
current can be used as a sort of free energy in nonequi-
librium systems.
It may seem that an analytical solution is simply a sat-

isfying way to tell us that our numerical calculations are
working, but in fact, it will be a useful intuitive guide
on complex problems, such as time dependent behaviors.
Other existing challenges in this respect are describing
nonequilibrium systems in contact with finite particle
reservoirs [9] or understanding ASEP-like dynamics in
complex networks [10].
Gorissen et al.’s work may also help estimate the fi-

nite size effects that come into play in real applications
and devices. In biological systems, molecular machines
work under very different conditions with respect to our
meter-sized world. Similarly, in the era of miniaturized
electronics, we must find ways to optimize heat dissipa-
tion in nanoelectronic circuits. These systems experience
strong statistical fluctuations because they are small, and
their behavior is highly sensitive to changes in the sur-
rounding medium. Understanding the thermodynamics
of small systems in nonequilibrium conditions remains a
major challenge.
The work of Gorissen et al. and other researchers are

ushering us into a new perspective of nonequilibrium phe-
nomena, where we can compare statistical theories with
real experiments at any spatiotemporal scale, explore
new concepts, and conceive useful devices from dynamic
nonequilibrium world.
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