An analog of the dynamical Casimir effect has been achieved, where phonons replace photons and thermal fluctuations replace vacuum fluctuations.

Subject Areas: Atomic and Molecular Physics, Particles and Fields
other positive. Within the event horizon, the negative energy photon of the virtual pair can exist indefinitely, allowing the positive energy photon to exist also. This real photon travels away from the black hole as Hawking radiation. Unfortunately, the radiation is too weak to observe with current technology. Creating or finding a very small black hole would help the effort.

On the other hand, virtual photons can be detected by accelerating the detector of the photons (the Unruh effect) \[7\]. In the reference frame of the detector, the virtual photons of the vacuum will appear to be a thermal distribution of real photons. In other words, the virtual photons are Doppler shifted into reality. A detector accelerating at \(10^{20} \text{ m/s}^2\) would measure a radiation temperature of only \(1 \text{ K}\).

Another way to detect the virtual photons is to rapidly change the nature of the vacuum. In the dynamical Casimir effect, a resonator has a discrete spectrum of eigenmodes \[8\]. These modes are populated with the virtual vacuum fluctuations. One such mode is illustrated in Fig. 1. Suddenly, the length of the resonator is changed very rapidly, at a speed which is a significant fraction of the speed of light (the experimental challenge). The change is too fast to be adiabatic, so the population of the virtual vacuum fluctuations is amplified. The extra population consists of real, observable particles.

As we can see, it is a challenge to convert virtual particles into real, observable particles. In all cases, the experimental parameters which must be achieved are formidable. But what if we could replace the speed of light with the speed of sound? In a Bose-Einstein condensate, phonons could play the role of the photons, and the condensate itself could play the role of the quantum vacuum. This is the idea of the condensed-matter analog \[1\]. Following the suggestion of Carusotto et al. \[9\], Jaskula and colleagues used a cigar-shaped Bose-Einstein condensate as a resonator for the analog of the dynamical Casimir effect \[2\].

In the experiment of Jaskula et al., the Bose-Einstein condensate was confined by focused laser light. The atoms forming the condensate were attracted to the bright light like insects to a lamp. In one experiment, the authors suddenly increased the laser intensity by a factor of 2, which caused an abrupt increase in the speed of sound in the condensate, and a sudden decrease in the resonator length, as indicated in Fig. 1. Each thermally populated mode was unable to follow the sudden change adiabatically. This resulted in the production of pairs of phonons with equal and opposite momenta, and a wide distribution of momenta was observed. In another experiment, the laser intensity was modulated sinusoidally, with a variation of about 10%. This resulted in pairs of phonons with frequencies equal to half of the modulation frequency, thus demonstrating the connection between the dynamical Casimir effect and parametric down-conversion of nonlinear optics \[9\].

The ongoing study of the dynamical Casimir effect is part of our effort to convince ourselves that empty space is truly filled with virtual particles. If they are really there, then we want to see them in the real vacuum, as well as in a Bose-Einstein condensate analog of vacuum.

References

About the Author

Jeff Steinhauer

Jeff Steinhauer is an associate professor at the Technion – Israel Institute of Technology. He specializes in condensed matter aspects of Bose-Einstein condensation, such as the Josephson effect and various types of excitations. This combination is not a coincidence, considering the subjects of his postdoctoral and doctoral research. Specifically, he did postdocs in atomic physics at the Weizmann Institute in Rehovot, Israel, as well as at MIT. In his doctoral work, he studied the Josephson effect and vortices in superfluid helium-3 and helium-4 at Berkeley, although his Ph.D. was officially from UCLA.