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Statistical mechanical models are the key to understanding the performance of error correction in
topological quantum computers.
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Quantum systems are very delicate, both because they
tend to be very small, and thus vulnerable to even tiny
disturbances, and because any process that gains infor-
mation about the state of a quantum system alters it.
Nevertheless, quantum coherence can, in principle, be
maintained indefinitely using error-correcting codes that
shield quantum information from the ravages of a harsh
environment. Protected quantum information in turn en-
ables large-scale quantum technologies, such as quantum
computers, which can take advantage of quantum in-
terference to solve some computational problems much
faster than any conceivable classical computer. One
promising approach is to use topological error-correcting
codes, which store quantum information safely by asso-
ciating it with some topological property of the system,
such as a path stretching all the way around it. Now, in
a paper appearing in Physical Review X, Hector Bombin
at the Perimeter Institute in Waterloo, Canada and an
international group of scientists from Switzerland, Japan
and the US have collaborated to study two families of
topological codes and determine how much protection
they provide against the most symmetric type of errors
[1]. They do this by making a connection between the
error-correcting codes and certain purely classical sys-
tems. The low-error regime, where the quantum code
functions, corresponds to the low-temperature ordered
phase in the classical system.

In the first burst of research on quantum error-
correcting codes in the 1990s, Dorit Aharonov pointed
out [2] that the codes undergo a phase transition between
a low-error phase and a high-error phase. When the error
rate is low, the error-correcting code can handle errors as
they arise, keeping the system close to the ideal state it
would have if there were no errors at all. As the error
rate rises, it becomes more common for multiple errors to
occur at the same time, and the error-correcting code has
more and more trouble keeping up. Eventually, the error
rate passes a threshold, and errors pop up faster than

the code can eliminate them. Below the threshold error
rate, the code wins the race, and above the threshold, the
errors win. When the code is very large, there is a sharp
phase transition between a phase where quantum infor-
mation can be stored indefinitely and a phase where the
information is rapidly destroyed by the errors. The same
considerations, albeit with more complicated procedures,
apply when the quantum gates used to build the error-
correction circuits are themselves imperfect, leading to a
phase transition between a phase where large-scale quan-
tum computation is possible and one where it is not.
A large number of quantum error-correcting codes are

known. Topological codes form one particularly inter-
esting class of codes. The most-studied topological code
is the toric code [3], so called because the quantum bits
(qubits) comprising it are spread across the outside of a
torus (a geometrical object with the shape of a donut).
In order to change or access any of the quantum informa-
tion stored in the toric code, one must manipulate qubits
stretching all the way around the torus, either around
the ring or through the hole in the center. The code
works by enforcing local conditions on the qubits. Any
local disturbance of the system will cause it to violate
some of the local conditions; only by creating a chain of
errors reaching around the torus can the encoded infor-
mation be changed without revealing the presence of the
errors (see Fig. 1). Because their error correction prop-
erties depend only on local checks, topological codes are
particularly promising for physical realizations, since er-
ror correction can be performed without shuttling qubits
over long distances.
One approach to understand the properties of topolog-

ical codes is to find an equivalence between the quantum
code and a simpler system. Dennis et al.[4] showed that
the behavior of the toric code experiencing bit-flip errors
can be subsumed into that of a purely classical system
called the two-dimensional random-bond Ising model.
This model consists of a lattice of classical spins that
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FIG. 1: The toric code is a quantum error-correction code
consisting of qubits spread on the outside of a torus. Qubits in
green have the right value while those in red represent errors.
A small collection of errors violates some local constraints in
the toric code, but only errors stretching all the way around
the torus can alter the encoded information. (APS/Alexandra
Iosub)

can either point up or down. For each neighboring pair
of spins, there is a random interaction that makes them
either want to line up the same way (ferromagnetic) or to
be opposite (antiferromagnetic). When most of the in-
teractions are ferromagnetic and the temperature is low,
the spins will mostly line up. At higher temperatures,
or when there is a larger percentage of antiferromagnetic
interactions, the spins will be disordered, split roughly
half and half between up and down.

The toric code corresponds to the two-dimensional
random-bond Ising model with a particular relationship
between the temperature and the probability that each
interaction is ferromagnetic. Having all the spins line

up corresponds to successful error correction, whereas a
random arrangement of spins corresponds to situations
where errors are too common and error correction fails.
Thus studying the location of the phase transition be-
tween the ordered and disordered phases of the Ising
model also tells us the threshold for error correction in
the toric code.
However, the connection between the toric code and

the random-bond Ising model only applies when the er-
rors are of a specific form, with bit-flip and phase errors
occurring independently. The new paper by Bombin et
al.[1] demonstrates a similar equivalence when the toric
code suffers from depolarizing noise, an error process
where all types of single-qubit errors are equally likely.
The classical model appearing in this case is a more com-
plicated system called the interacting 8-vertex model.
They also derive a similar result for another family of
topological codes called color codes. As before, study-
ing the phases of the classical models reveals the thresh-
old for the quantum codes to correct depolarizing noise.
The authors find that taking advantage of the specific
properties of depolarizing noise—treating all error types
together—allows error correction at a higher rate of er-
ror than the more naive approach of treating each type
of error separately. This is welcome: Coming up with
quantum error-correcting codes that tolerate more errors
brings us closer to the challenging long-term goal of build-
ing large quantum computers.

Full Disclosure: Though Hector Bombin is a colleague
of mine (Gottesman) at the Perimeter Institute, his work
on this paper was conducted independently.
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