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A new way to characterize the encoding of signals from the retina defines a distance between different
stimuli according to the similarity of their neural responses.
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Anyone who has experienced change blindness (in
which a large difference between two images goes un-
noticed [1]) knows that while our brain is supposed to
efficiently process the sensory inputs from our natural
environment, it can be tricked by well-designed stimuli.
In the visual system, this is best reflected by optical il-
lusions in which two physically different stimuli appear
identical. For example, the perceived brightness of an
area can be greatly influenced by the luminance of the
surrounding areas: a gray patch on a dark background
can appear as bright as a darker patch on a bright back-
ground [2]. These illusions suggest that physically differ-
ent stimuli will trigger identical responses in a part of the
visual system. Searching for the neural basis of such illu-
sions is a major challenge in sensory neuroscience. Some
researchers have found that perceived illusions can be
reflected in the firing rate of single neurons [3] or popu-
lations of neurons [4].

However, a conceptual barrier remains. How do we
know if the responses of a population of neurons to two
different stimuli are the same? For instance, by compar-
ing the firing rates of the recorded neurons, we assume
they contain all the information about the stimulus, an
assumption that might be wrong—or insufficient. If we
were able to define an objective measure of difference be-
tween neuronal patterns, we could determine which stim-
uli evoke similar responses. A physical stimulus and its
illusory percept should be very close in this neural met-
ric. In a paper in Physical Review Letters, Gašper Tkačik
at the Institute of Science and Technology, Austria, and
colleagues report their theoretical development and ex-
perimental study of a new kind of neural metric for char-
acterizing how different two stimuli are in terms of the

response of a population of neurons in the retina [5].
To achieve this, they used data simultaneously

recorded from 100 neurons in the retina of a salaman-
der (a classical model to study neural coding in the
retina), while presenting different sequences of flickering
light (Fig. 1). Since the relation between a stimulus and
the neural response is stochastic, their first step was to
obtain an estimate of the conditional probability distri-
bution P (σ|s), which quantifies the probability that the
neural pattern σ is emitted if stimulus s is presented. σ
is represented by a binary word with a 1 for each neuron
that emitted a spike, and 0 for the ones staying silent.
This distribution cannot be sampled empirically, so they
used a maximum-entropy procedure (stimulus-dependent
maximun entropy, or SDME model), developed in de-
tail previously [6], which constructs P (σ|s)) distributions
based on the experimental data. This model predicts the
probability of a spike pattern from a weighted sum of the
stimulus, the activity of each cell, and the joint activity of
pairs of neurons. Using the probability distributions ob-
tained from the model, they defined the retinal distance
Dret between the stimuli as the distance between the dis-
tributions of responses elicited. This latter is quantified
using a symmetrized version of the Kullback-Leibler (KL)
divergence, a classical measure to compare two distribu-
tions: DKL(P1,P2) measures how much information is
lost when approximating P2 with P1.
The advantage of using DKL is that this measure is

relatively agnostic about the exact nature of the neural
code: it does not assume that all the information about
the stimulus is contained in the average firing rate, or in
the timing of the spikes, but takes into account the full
distribution of the neural response.
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FIG. 1: Two different stimuli, labeled s1 and s2, were pre-
sented to a salamander retina. This is schematically shown
here as grey patches on light and dark backgrounds, but
Tkačik et al. used sequences of flickering light. They trig-
gered two different sets of neural responses σ to repeats of the
same stimuli. Out of these repeats, a distanceDret between s1
and s2 was computed as the difference between P (σ|s1) and
P (σ|s2). The bottom right panel shows the matrix of dis-
tance for different pairs of stimuli indexed by t[s]. The upper
diagonal shows the Euclidian distance between the stimuli,
the lower diagonal the Dret distance estimated from the reti-
nal acitivity. (Top left panel adapted from D. Purves et al.[2];
Lower panels adapted from G. Tkačik et al.[5]; Salamander
photo, c© Larry L. Miller, used with permission.)

This definition allows the authors to calculate a dis-
tance between each pair of stimuli. In a second step,
they computed the “distance matrix” between all stim-
uli, Dret(si, sj). Such a distance is hard to visualize,
so they used a method called multidimensional scaling
(MDS) that makes each stimulus correspond to a point
in a low-dimensional space, such that the Euclidian dis-
tance between the points approximates Dret.

This procedure tells them whether this complex neu-
ral metric can be projected in a low-dimensional space,
where it is more easily interpretable. In the retina
dataset, they found that the two first modes (where the
first mode is essentially the firing rate of the neurons)
already capture most of the metric in stimulus space.
They even build a model that predicts the distance Dret
between stimuli from their projections onto two vectors.

These findings show that this large population of neu-
rons, although initially high dimensional, extracts only
a few components from the stimulus. This dimensional-
ity reduction was found before for single neurons, using
techniques such as spike-triggered covariance analysis, for
example [7], showing that each neuron can divide the
space of possible stimuli into the ones that evoke the spike
and the ones that don’t. The novelty of the approach of
Tkačik et al. is to take into account the whole interacting
population, rather than single neurons. One might have
thought that the different neurons would each separate
the stimulus space into distinct subspaces, so that read-

ing the different neurons would increase the information
about the stimulus exponentially. However, here it is
shown that this population of neurons is very redundant,
since its sensitivity can be reduced to two components.
These two components provide an important insight

into the changes in the stimulus that the neural popu-
lation can detect, as well as the ones it cannot. Over
the time course of the stimulus, the method of Tkačik et
al. predicts that some fluctuations added to the stimu-
lus should not change the retinal response, while others,
sometimes smaller, would.
The implications of this work are potentially impor-

tant. First, it provides methods to investigate how pop-
ulations code for neural stimuli by taking into account
the whole population, not just single neurons. Second,
it allows quantifying what aspects of stimulus space are
encoded and gives a metric for such quantification. Of
course, there are some limitations in this approach. The
entire definition of the metric relies on a model connect-
ing the stimulus to the response, and it gives relevant
results only as long as this model is a good one. In the
present case, the model has been tested and gives a faith-
ful prediction of the retinal response [6]. But for more
complex stimuli, or other structures, it is not yet clear
how well the same model would perform, and significant
extensions might be needed. Nevertheless, this approach
is an important step in defining a metric on stimulus
space based on a neural network response. It becomes
possible to look for the most singular points of this met-
ric, where small deviations will trigger large changes in
the neural response. Designing stimuli to probe these
singular points would, in fact, be a good way to test the
validity of the model.
This neural metric will also have interesting applica-

tions in other modalities, especially when there is no nat-
ural distance between stimuli, like in olfaction. Finally,
it can also have applications to the motor system, and
in particular, to neuroprotheses (artificial legs or arms
controlled by neural activity), where the key is precisely
to define a neural-based distance between motor actions.
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