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A model shows that as the size of a brittle material grows, the probability that it will fracture from
a single crack approaches 100%.
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A long metal thread breaks more easily than a short
one—an observation Leonardo da Vinci made in the 15th
century. It all comes down to simple statistics: the larger
an object, the more likely it is to contain a region that
breaks when subject to stress. The fracture properties
of brittle materials also depend on the disorder in their
underlying structure: a homogeneous material like glass
breaks differently than composite materials like bone and
seashell. Although system size and disorder are linked in
a statistical physics description of fracture, the two pa-
rameters have typically been treated separately. Now,
in Physical Review Letters, Ashivni Shekhawat at Cor-
nell University and colleagues present the first theoretical
model that accounts for both at once [1]. Their model al-
lows the authors to identify three different “phases” that
characterize crack formation, and show how one phase
evolves into the other as the system size or amount of
disorder increases.

Even though breaking things is a daily experience,
a theoretical framework to describe fracture has only
emerged in the last 100 years, starting with the semi-
nal work by A. Griffith [2]. The bulk of existing theory is
based on linear fracture mechanics, which assumes mate-
rials are perfectly homogeneous and elastic (meaning the
stretching of a material varies proportionally to the load
force on it, and no plastic deformation remains after the
load is removed.) But such materials are rarely used in
applications. Industrially important materials, like glass,
can be brittle: they break under moderate stress, instead
of stretching plastically like metals do. Concrete, which
is made of several stones and grains of sand of various
sizes, each able to sustain different loads, is both brittle
and inhomogeneous (disordered).

Introducing disorder into a solid—even a purely elas-
tic material—has an important effect on its properties,
including its rigidity, lifetime, and the amount of stress
it can withstand before fracturing. Linear elastic frac-

ture mechanics can be adapted to describe these effects
in materials, but doesn’t give deep insight into how frac-
ture occurs. During the past 30 years, however, physi-
cists have developed new theoretical tools to deal with
disordered media. Meanwhile, important experimental,
numerical, and theoretical efforts to understand fracture
mechanics have come from physics, engineering, and ma-
terials science.
Experiments have focused mostly on the description

of crack paths, which become more jagged with disorder
[3], and on the intermittency of crack propagation [4].
These experimental results have led to two main theo-
retical pictures. One describes the case when disorder is
weak—that is, when it can be treated as a perturbation
of the ideally ordered case. In this case, it has been shown
that fracture of a disordered three-dimensional solid can
be viewed as a dynamic phase transition: the crack front
“depins” itself from the disorder [3]. In the case of strong
disorder, it has been argued that fracture is a percolation
phenomenon [5]. Until recently [6], however, no real uni-
fying framework was available.
The central point of Shekhawat et al.’s paper is to pro-

pose such a unifying framework. The authors do so using
a model called the random fuse network [7], which treats
a break in a two-dimensional material as though it were
a severed wire in a conducting mesh. The model ac-
counts for disorder—variation in the strength of different
components in the material—by giving each fuse a dif-
ferent current threshold for bursting. The benefit of this
model is that it allows disorder to be varied continuously.
The authors use the model to numerically calculate the
size distributions of clusters of cracks and of avalanches
(where some broken bonds trigger the fracture of neigh-
boring bonds), and put together a scaling theory that
provides a coherent picture of their results. All of this is
neatly summarized in a phase diagram showing the ob-
served types of fracture for given size and disorder (Fig-
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FIG. 1: The different types of crack formation predicted to
occur in a brittle solid when the size of the system or the
amount of disorder is varied. (Note that zero on the plot cor-
responds to maximum disorder and infinite size.) Three dis-
tinct regions are observed: Percolation (pink region), where
small cracks trickle through the material; avalanches (yellow
region) where small cracks branch into larger ones; and nu-
cleation (white region) where a large single crack forms. (A.
Shekhawat et al.[1])

ure 1). Specifically, the authors are able to define three
regions: (i) nucleation (large systems, or little disorder),
in which failure starts from a single crack that nucle-
ates without much fracturing around it; (ii) avalanches
(intermediate disorder); and (iii) percolation (very large
disorder), where small cracks open in various parts of
the sample and coalesce into clusters. In this latter case,
failure only occurs when one of these clusters reaches the
specimen size.

One of the authors’ main findings is that as a system
grows, fracture is less likely to be caused by the percola-
tion of many small cracks, whatever the amount of disor-
der. Rather, as the size of their fuse network grows, the
probability that a critical crack will appear approaches 1.
However, the crossover length at which this happens can

be large, and clearly depends on the amount of disorder.
According to this model, both percolation-like behavior
and scale-invariant precursors are finite-size effects; on
large length scales, a single crack always prevails.
A useful extension of this work will be to see if the

results apply to other modes of fracture (the tearing
mode of fracture the authors consider is usually unsta-
ble). Also, since the authors’ model is two dimensional,
it would be interesting to see if the same phase diagram
(Figure 1) survives in three dimensions, where the stiff-
ness of the propagating crack front qualitatively changes
the physics.
The model predicts whether failure results from the

buildup of damage, or occurs in an abrupt fashion. Hence
it could prove helpful in choosing the material and the
size of an object in order to prevent violent failure. From
the standpoint of fundamental physics, the findings are
also of interest: The authors make the surprising finding
that fracture is a critical phenomenon that is a mixture
of discontinuous (first-order) and continuous characters.
Most phase transitions are either one or the other.
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