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The response of quantum spin liquids to an oscillating magnetic field should provide measurable
signatures of Majorana fermions and other quasiparticles.
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Quantum spin liquids (QSLs) are systems of interact-
ing spins that have a disordered ground state: while the
materials are solid crystals, their spin arrangements are
constantly in flux, much like the molecules of an ordinary
liquid. There are several candidates for QSL, but their
experimental observation remains controversial. QSLs
are of great interest in their own right, but they may
also serve as platforms for “topological quantum com-
puting,” which may outperform conventional computing
in carrying out certain algorithms [1].

From the theoretical point of view, the main difficulty
is that QSLs are strongly correlated systems, in which
mutual electronic interactions are not weak and single-
electron approximations are inapplicable. This makes it
difficult to carry out reliable calculations. Within this
context, an exactly solvable QSL model found by Alexei
Kitaev in 2006 [1] provided a gold standard. His solu-
tion described the system’s excitation spectrum and its
thermodynamics but could not tackle the spin response
functions, which describe how spins respond to a time-
dependent magnetic field. Calculations of such functions
turned out to be considerably more difficult. As reported
in Physical Review Letters, Roderich Moessner and col-
leagues at the Max Planck Institute for the Physics of
Complex Systems, Germany, together with John Chalker
at the University of Oxford, UK, have now successfully
tackled this problem [2]. The result offers a key advance
in the theoretical understanding of QSLs and may be
an important tool to guide experimental investigations.
In particular, the authors identify measurable quantities
associated with quasiparticles, crucial to QSL physics,
including the elusive Majorana fermions—particles that
are their own antiparticles, which were introduced by Et-
tore Majorana in 1937 in the context of particle physics
but have not yet been observed.

Moessner et al.’s work builds on Kitaev’s model, which
describes a two-dimensional system of spins with S =

1/2 on a honeycomb lattice [see Fig. 1(a)] interacting
through a strongly anisotropic exchange interaction—the
purely quantum effect responsible, for instance, for ferro-
magnetism in some materials. Unlike the isotropic ferro-
magnetic case, Kitaev’s model posits an exchange along
each link of the lattice that involves only one spin com-
ponent (x component on e1, y component on e2, and z
component on e3, as shown in Fig. 1). It has been sug-
gested that such anisotropic exchange (hence the condi-
tions for a QSL) may occur in certain transition metal
compounds with strong spin-orbit coupling [3]. But it
is likely that it is contaminated by the presence of the
conventional isotropic exchange [4].
Kitaev’s model is only an approximation of real-world

systems, but there are important reasons why it is of a
great interest for theorists. First of all, there are few ex-
amples of models describing such complex systems that
can be solved exactly, and having such simple solutions
is almost miraculous. Second, the system properties re-
vealed by this solution are quite unusual: It turns out
that the system of interacting spins under consideration
is a QSL. It never locks into an ordered state and its
spin-spin correlations remain short range. Despite this
lack of order, the phase diagram has a region where the
excitation spectrum is gapless. As it turns out, particles
in this region of the spectrum could be the solid-state
equivalent of Majorana fermions.
In real space, the Majorana fermion is described by

a real field that is equal to its Hermitian conjugate:
χ(r) = χ+(r). In momentum space, this means that the
creation operator is equal to the annihilation operator
with the opposite momentum: χ(−k) = χ+(k). Hence
Majorana fermions can be represented as a linear combi-
nation of creation and annihilation operators. This situ-
ation is analogous to a type of quasiparticle found in su-
perconductors, called a Bogoliubov quasiparticle, which
is also a linear combinations of a particle and antiparticle
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FIG. 1: (a) Kitaev’s model describes a two-dimensional sys-
tem of spins S = 1/2 on a honeycomb lattice interacting
through a strongly anisotropic exchange interaction. Under
certain conditions, the system is a quantum spin liquid (QSL),
in which the spin arrangement is constantly in flux. (b) Phase
diagram for a QSL. The model predicts a gapped and a gap-
less phase. The latter should host propagating Majorana
fermions, whose signatures could be measured, according to
the work of Knolle et al.[2] (APS/Alexei M. Tsvelik; Image
on homepage: J. Knolle et al.[2])

(holes).
In the context of the Kitaev model, such Majorana

fermions emerge as collective degrees of freedom—the
operator describing the fermion field at a given point
is made up of all the spins of the system by means
of a Jordan-Wigner transformation. Such transforma-
tions have been used primarily in one-dimensional sys-
tems where the fermions have a clear physical meaning,
namely, domain walls between different ground states.
In one dimension, the walls are pointlike objects that
can propagate like particles. At first sight, this is not
possible in higher dimensions, but the Kitaev model sug-
gests a mechanism by which it could happen. It turns
out that the Jordan-Wigner transformation converts the
spin model into a model where, besides fermions, there is
also a gauge field. This field (which is static in Kitaev’s
model) creates landscapes in which Majorana fermions

exist and can propagate in two dimensions.
Kitaev’s model reveals the following picture. There are

two fermion branches: the propagating and the localized
ones. Localized fermions enter the Hamiltonian as a Z2
gauge field, in turn creating a landscape for the propa-
gating Majoranas. As a result, the Hamiltonian of the
propagating Majoranas is a simple one: it describes non-
interacting particles in a static gauge field. The ground
state is uniform. Excitations of the gauge field are vor-
tices, called visons, that carry magnetic flux and act as
static defects that scatter propagating fermions. The
model predicts two phases; in one of them the fermions
are gapless and in the other they are gapped [see Fig.
1(b)].
Kitaev’s solution is, so far, just a mathematical beauty,

but the work of Moessner and co-workers [5] suggests
how to reveal it to the outside world: Their calcula-
tions show the presence of Majoranas could be estab-
lished through a measurable quantity—the spin response
to a time-dependent magnetic field (the dynamical spin
susceptibility). Measurements should reveal a paradox.
Namely, the specific-heat measurements will demonstrate
the presence of gapless excitations, but these gapless ex-
citations will not appear in the spin-spin correlation func-
tions. And this is despite the fact that the fermions arise
as collective excitations of the spin system. The spin-
spin correlation functions remain short ranged because
a spin flip involves both propagating and nonpropagat-
ing fermions. This should reveal itself in the dynamical
correlation function.
The work by Moessner and co-workers provides a solid

foundation for these general expectations in the form of
rigorous calculations of the dynamical spin susceptibil-
ity [χ(ω, q) as a function of frequency ω and wave vec-
tor q]. χ(ω, q) is measurable, for instance, by neutron
scattering and carries information about the excitation
spectrum, showing how the system responds to the flip
of a single spin. Such flip changes the total spin projec-
tion by one Planck constant, and if the excitation car-
ries spin 1, the imaginary part of χ has a sharp peak at
the frequency corresponding to the dispersion of the ex-
citation. The authors’ calculations—considerably more
complicated than the Hamiltonian diagonalization used
to solve Kitaev’s model—required numerical treatment
and demonstrated that in the Kitaev model the imag-
inary part of χ displays a spectral gap followed by an
incoherent continuum. Thus, despite being gapless par-
ticles, the propagating Majoranas do not appear in the
low-energy spin response—a very unusual situation.
The results may give us valuable insights on other

quantum liquids, for example, QSL on a kagome lattice
(an arrangement composed of interlaced triangles, whose
name comes from a Japanese woven bamboo pattern)
[6, 7]. But the finding may have broader implications:
Models of QSL belong to the general class of so-called
lattice gauge theories where particles are coupled to each
other by strong dynamical interactions. Such theories are
considered not just in condensed matter but also in par-
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ticle physics. The present solution may thus provide us
with an alternative angle to view lattice gauge theories.
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