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Measurements of the entropy of immune cell distributions can provide a reliable tool for the diagnosis

of acute myeloid leukemia.
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We immunologists have a problem. The immune sys-
tem of mammals consists of a heterogeneous population
of cells with different traits. Such diversity plays a key
role in biological function, as division-of-labor within the
immune system allows organisms to respond to virtu-
ally any type of infectious agent. But it also makes it
more challenging to characterize immune cell populations
and diagnose diseases. To understand the immune sys-
tem, experimentalists categorize different types of cells
by measurements of individual molecules. They can ob-
tain a coarse characterization by studying a single cellular
property, e.g., how a cell expresses a specific gene (i.e.,
how it uses the information encoded in the gene to di-
rect the assembly of a protein). But current techniques
allow the measurement of an increasing number of molec-
ular properties. This may provide a more complete and
nuanced view of each cell’s unique biological profile and
function.

Thanks to the recent explosion of high-throughput
measurement technologies, biologists can now character-
ize multiple properties of a single cell at a rate of thou-
sands of cells per second. However, knowing all molec-
ular details does not necessarily amount to new biologi-
cal understanding, and we do not yet have tools to an-
alyze such multidimensional data meaningfully. Writing
in Physical Review X, Jose Vilar at the University of the
Basque Country, Spain, shows how methods borrowed
from statistical physics offer possible solutions to these
problems [I]. Vilar analyzes multidimensional arrays of
single-cell data from large heterogeneous populations of
immune cells. By calculating the entropies of cell dis-
tributions, he is able to derive effective diagnostic crite-
ria for patients with acute myeloid leukemia (AML)—a
blood cancer characterized by the rapid growth of ab-
normal white blood cells that prevent the production of
normal blood cells.

Until recently, fluorescence-based flow cytometry
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(FCM) has been the only technique for such multipara-
metric analysis of blood cells and liquid tumors. In FCM,
cells are first labeled with fluorophore-conjugated an-
tibodies that selectively bind molecules of interest (so-
called “epitopes,” e.g., specific proteins on the surface of
the cell, in the cytoplasm, and in the nucleus). Each cell
is passed through a laser, and the fluorophore-antibody-
epitope complexes within each cell emit light at a char-
acteristic wavelength. The resulting emission intensities
of each fluorophore are measured, resulting in measure-
ments of epitope abundance for each individual cell [Fig.
[{a)]. High throughput (> 20,000 cells/second) acquisi-
tion of biological samples yields distributions of molecu-
lar observables within a population of cells [Fig. [1[b)].
By using distinct fluorophores and multiple lasers, as
many as ten different epitopes/cell can be currently mea-
sured, but newer methodologies [2] are expanding the
scale of simultaneous observables into the thousands [3].

Researchers are thus faced with an overwhelming ex-
plosion of information. But despite the increasing ex-
perimental capabilities, in most cases, observables are
analyzed in only one or two dimensions, i.e., diagnostic
criteria are based on one or two proteins. The most com-
mon FCM data processing methods partition a cell pop-
ulation into subpopulations according to epitope abun-
dance, picking, for instance, one to two proteins whose
alterations have been found to best characterize the dis-
eased state. Plotting in one or two dimensions only, ex-
perimentalists divide a large population into two groups
that can be identified as “positive” or “negative,” based
on the distribution of the epitopes of interest (a process
known as “gating”). This methodology is sufficient for
simple cases. For instance, chronic lymphocytic leukemia
(CLL) is defined by the accumulation of a large number of
aberrant B cells (expressing a T cell marker CD5) in the
patients’ blood. Yet this gating methodology has ma-
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FIG. 1: (a) From the emission of embedded fluorophores,
fluorescence-based flow cytometry can measure the abun-
dance of certain proteins for each individual cell. (b) High
throughput acquisition yields distributions of several molecu-
lar observables within a population of cells at a rate of over
20,000 cells/second. (c) From collections of many single-cell
measurements of a number of proteins, traditional methods
(left: manual gating, mixture models, dimensional reduction)
attempt to derive diagnostic criteria. The new method (right)
proposed by Jose Vilar estimates, by applying the principle
of maximum entropy, the entropy S of the entire cell pop-
ulations. The difference between the measured entropy and
the entropy of reference (AS) of sick and healthy cells can be
used to reliably diagnose acute myeloid leukemia. (APS/R.
Vogel, C. G. K. Ziegler, G. Altan-Bonnet; Image on home-
page: Wikimedia Commons/VashiDonsk)

jor limitations of reproducibility and subjectivity, due,
for instance, to unavoidable experimental uncertainties
or to the fact that, in many real situations, distribu-
tions are not clearly defined. Another major limitation
arises when one compares multiple molecular observables
between populations (e.g., of healthy cells and leukemic
cells). Instead of studying the difference between entire
cellular distributions to find meaningful alterations, in-
formation is often collapsed to the cell average of the
entire population. But this prevents the diagnosis of
diseases that might result in cell distribution changes,
rather than in changes of average properties. We thus
still lack standardized, objective, and computationally
feasible methods to incorporate population distributions
and high-dimensional molecular observables into routine
analysis.

Investigators are thus developing techniques that bet-
ter characterize cell statistics, providing a detailed anal-
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ysis of distributions of measured observables. One such
method is the evaluation of mixture models [4], in which
data are assumed to be a superposition of some prede-
fined distributions that are derived from previous ref-
erence measurements. The data are decomposed as a
mixture of such distributions, in a fashion that can be
both quantitative and automated. While this technique
is powerful, it often breaks down because distributions
stray from the idealized defined model. Furthermore, in-
teresting biology is often found in the extreme parameter
values, and there is a risk that these methods will treat
them as outliers in a distribution.

Now, Vilar has introduced a new powerful method to
make sense of high-dimensional information and prop-
erly take into account the statistics of distributions.
His results provide a tool to diagnose the disease sta-
tus of patients from FCM measurements. Vilar used a
dataset disseminated through a community-based chal-
lenge (DREAMG6,/FlowCap2[5]), in which researchers
were given a training set of FCM measurements (cor-
rectly classified as AML or healthy) and a test set of
FCM data whose classification was kept secret. The key
challenge was to provide a diagnostic tool able to han-
dle heterogeneity and deliver a correct diagnosis, despite
the high variability within the two classes (healthy and
AML).

Vilar’s arguments proceed as follows. In an experiment
we don’t always measure what causes the disease, but just
a limited number of genes that may be affected by the dis-
ease. But the patient status must be dependent on many
more “hidden” degrees of freedom (i.e., gene expression
levels) that are not directly captured by the measure-
ment. While such parameters cannot be accessed, they
might be reflected in the general statistical properties of
the system, like its entropy. In other words, healthy and
sick cell populations will have different entropies. But
how can one calculate the entropy of a system in which
a large part of the microscopic parameters is not acces-
sible? Vilar invokes here the principle of maximum en-
tropy: the probability distribution that best represents
the system is the one with the largest entropy. Hence,
given partial knowledge obtained from experiments on
a range of microscopic parameters (abundance of certain
marker proteins), the principle allows him to compute, by
maximizing the entropy, an estimated distribution that
also includes the unobserved, hidden variables [Fig. [[|c)].
From this he derives, for each patient, a measure of “rela-
tive entropy” as the difference between the patient’s dis-
tribution and the reference distributions of diseased and
healthy states deduced from the training dataset. This
relative entropy allows Vilar to classify each patient as
healthy or AML with almost perfect accuracy—a feat
that led his approach to rank first in the DREAMSG6 chal-
lenge.

Vilar’s success relies on the low-noise of FCM measure-
ments, allowing the detailed study of the distribution of
a protein’s abundance within a population of cells. It is
worth noting some limitations of his approach: his es-
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timates depend on the population size and on how the
population is partitioned among discrete sublevels for the
calculation of entropy. But the method is sufficiently ro-
bust to parse healthy from diseased individuals. An im-
portant advantage of the technique is its scalability: as
the dimensionality of experimental datasets grows (with
30 or more acquisition channels for each cell), the method
would allow the computation of entropy estimates on
smaller subsets of dimensions, by defining a subspace en-
compassing most of a sample’s variability. All these con-
siderations imply a great methodological improvement
compared to the manual and subjective gating used in
clinical labs.

As we accrue ever more molecular microscopic details
about biological systems, Vilar’s study emphasizes the
under-appreciated relevance of cell distributions. The
success of his method illustrates how statistical physics
can aid in distilling meaningful biological information
from highly multidimensional microscopic measurements,
potentially leading to life-saving diagnostic techniques.
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