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Mathematical tools from physics are enabling new ways to study a classic optimization problem.
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Combinatorial optimization problems—of which the
most famous is the traveling salesman problem—have
traditionally belonged to the realms of computer sci-
ence and mathematics, but in the last several decades,
important contributions have also come from statisti-
cal physics. Physicists have developed a set of pow-
erful mathematical tools to analyze models of systems
with disorder and frustration, and it turns out that
these methods can successfully be applied to optimization
problems too [1]. In Physical Review E, Sergio Caracciolo
at the University of Milan, Italy, and his colleagues used
a new method inspired by problem solving in physics to
investigate a classic problem in combinatorial optimiza-
tion, called the Euclidean bipartite matching problem.
They managed to compute the scaling function of the
optimization problem; namely, how the cost of the op-
timal solution scales with the size and dimension of the
system [2]. This function is an infinite series and while
previous approaches have been able to figure out the first
(leading) terms in the series, Carraciolo et al. are the first
to be able to calculate the next (subleading) terms in the
series. Their novel approach explores a connection be-
tween the discrete matching problem and a continuous
optimization problem from the 18th century.

The Euclidean bipartite matching problem is best il-
lustrated by an example. You are a sales manager for
a company, and you have n salespeople on the road to
meet customers. Your salespeople are currently located
in n cities, and you want to relocate them to n new cities
such that the total distance traveled by your sales force
is minimized. You draw all 2n cities on a map and color
the current locations of salespeople red and the new des-
tinations blue. Your task is then to match the cities in
red-blue pairs such that the sum of the red-blue distances
in your matching is minimized (Fig. 1). The term bipar-
tite in this matching problem refers to the fact that we are
matching elements from two disjunctive sets (“red” and

FIG. 1: The Euclidean bipartite matching problem asks: How
do you connect the red points with the blue points such that
the total length of connections in minimized? (APS/Alan
Stonebraker)

“blue” cities). In the general bipartite matching prob-
lem we are looking for a permutation π that minimizes
the cost function E(π) = n−1 ∑n

i=1 wi,π(i), where wij
denotes the cost of matching red element i with blue el-
ement j. In the Euclidean matching problem, wij is the
geometrical distance between red city i and blue city j.
As algorithms go, the general bipartite matching prob-

lem is “easy” since we know efficient algorithms that can
find solutions in polynomial time. But algorithms look at
the problem case by case, they don’t tell us much about
generic properties of optimal matchings. A simple exam-
ple is the relation between the size n of the problem and
the cost value of the optimal matching. For large values
of n this scaling relation becomes independent of par-
ticular instances and represents a generic feature of the
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FIG. 2: The Monge-Kantorovich transportation problem
asks: How do you best move piles of sand to fill up holes
of the same total volume? (APS/Alan Stonebraker)

matching problem. In the case of the Euclidean matching
problem, we expect that, given a red point, the nearest
blue points can be found in a volume of order O(n−1)
around it. Hence their distances from the red point are
of order O(n−1/d) where d is the spatial dimension. As-
suming that in an optimal matching, each red point is
matched to one of its nearest neighbors, the optimal cost
should scale like O(n−1/d). This is in fact the dominant
(leading order) term of the scaling function for large val-
ues of n, at least for d > 2[3]. Carraciolo et al. go beyond
this result by computing the subleading term of the scal-
ing function.

The established mathematical tools of statistical
physics work best if the costs wij can be considered inde-
pendent random variables. But in the random Euclidean
matching problem considered by Carraciolo et al., the
random positions of the points in d-dimensional space
are independent and the resulting distances wij are cor-
related random variables. Therefore Carraciolo et al. had
to look for an alternative approach and they found one
that is both simple and surprising [2]: they discard the
discrete nature of the matching problem and resort to a
continuous generalization for which an analytical expres-
sion for the minimum cost can be computed.

Again, an example will help to understand this contin-
uous problem. Imagine that instead of sending salespeo-
ple from red to blue cities we want to move piles of sand
to fill in holes (Fig. 2). The total volume of sand equals
the total volume of holes, but the amount of sand varies
from pile to pile, and the volume of the holes varies, too.
The task is to minimize the total distance that is trav-
eled by all the grains of sand. This problem is known as
the Monge-Kantorovich transportation problem. It was
introduced by Gaspard Monge in 1781 [4] as the prob-
lem of “excavation and embankments” (les déblais et les
remblais).

Both piles of sand and holes are no longer characterized
by points in space but by continuous distributions. And
sand from one pile can go to different holes. The Monge-
Kantorovich problem is a continuous generalization of
the Euclidean bipartite matching problem, and, as such,

it seems to be harder to analyze than the discrete version.
But surprisingly, this is not the case.
The solution of the Monge-Kantorovich problem is

trivial in the limiting case in which there is only one hole
that spans the whole area, with constant depth, and sand
that is uniformly distributed over the hole: we simply let
each grain of sand fall down where it is. Caracciolo et al.
start from this simple solution and consider the case of
small deviations from the uniform distribution for both
sand and holes. The continuous nature of the problem
allows them to derive an analytical expression for the
expected transportation cost in terms of the small devi-
ations from the uniform distribution. (The approach is
similar to the one used to analyze small transverse distor-
tions of a continuous elastic membrane.) The mathemat-
ics involved is basically vector analysis, the Poisson equa-
tion, and Fourier transformation—very familiar grounds
for physicists.
The authors then claim that in the large n limit, the

discrete Euclidean matching problem is similar to the
case of small deviations from the uniform distribution
in the Monge-Kantorovich problem. This is a reason-
able assumption since the cities in the random Euclidean
matching problem are finite samples of the uniform dis-
tribution. The authors don’t specify the similarity in
technical terms or even prove it. Rather, they boldly ap-
ply the formula from the continuous solution to the dis-
crete case to obtain the asymptotic scaling of the random
Euclidean bipartite matching problem in d dimensional
space. Their approach reproduces the known leading or-
der of the scaling function in all dimensions d and it also
yields the complete subleading term for d > 2 and the
previously unknown constants in the leading order term
for d = 1 and d = 2.
Switching from discrete to continuous variables is a

common pattern in computer science to design power-
ful algorithms for optimization problems [5]. Caracciolo
et al. demonstrate that this idea can also be used to
analyze random instances of combinatorial optimization
problems. Their results improve our knowledge about
the scaling of the Euclidean matching problem. It re-
mains to be seen whether their method can be extended
to other optimization problems.
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