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The no-hair theorem was originally formulated to describe isolated black holes, but an extended
version now describes the more realistic case of a black hole distorted by nearby matter.
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In general relativity, strong gravity can warp the
geometry of spacetime so much that black holes are
formed—regions from which not even light can escape.
The interior of a black hole, where curvature becomes in-
finite, is an extremely complex configuration that defies
our current theories. But according to general relativity,
these complexities might be hidden to observers outside
the black hole’s horizon. The so-called “no-hair theo-
rem” implies that isolated black holes in equilibrium are,
in fact, extraordinarily simple [1] and can be fully char-
acterized by just two numbers, the mass (M) and the
angular momentum (J). As physicist John Wheeler put
it, “black holes have no hair”—a statement that uses hair
as a metaphor for all complicated details.

However, this simplicity emerges only if the black hole
is isolated from everything else—an assumption not met
in most astrophysical scenarios. Norman Gürlebeck of
the Center of Applied Space Technology and Micrograv-
ity (ZARM) at the University of Bremen, Germany, has
now unraveled a new aspect of black hole simplicity. He
has shown that, under certain assumptions, the no-hair
theorem is still valid when the black hole is not isolated
[2]. The extended theorem would, for instance, apply
when a black hole is surrounded by a matter disk (see
Fig. 1).

The new work considers black holes that are static:
they neither accrete mass nor rotate. If they are isolated,
their gravitational field is spherical and is characterized
entirely by the black hole’s mass M . But in realistic
environments, black holes can be distorted by the mass
surrounding them. Mass distortions can be described by
a sum of multipole moments, similar to the ones used in
electromagnetism to calculate the electric field outside a
region containing charges. In classical Newtonian grav-
ity, if a star is spherical, only its monopole moment is
nonzero and is given by its mass. But if the star is dis-
torted, its higher multipoles are also nonzero. The Pois-

son equation relates the “source moments” (multipoles
of the given mass distribution) to the “field moments”
(obtained by expanding the Newtonian potential in pow-
ers of 1/r), which completely determine the gravitational
field outside the source. Thanks to the linearity of the
Poisson equation, the source multipoles are the same as
the field multipoles.
A similar idea applies to objects like black holes that

must be described by general relativity. In 1970, Robert
Geroch [3] introduced analogous field moments for static
mass configurations, which were later shown to be suf-
ficient to determine the spacetime geometry outside the
region containing the sources [4]. Within this multipole
formalism, the no-hair result can be rephrased to say that
only the mass monopole is needed to define the external
spacetime geometry of an isolated static black hole.
But for a black hole surrounded, say, by matter

rings, this simplicity is lost and the black hole acquires
two types of “hair.” First, multipoles beyond the mass
monopole are needed to describe the spacetime geometry
outside the black hole. Second, the presence of external
matter also distorts the geometry of the black hole hori-
zon. These distortions can also be fully characterized by
a set of so-called horizon multipoles [5], which are the
analogs of the source multipoles in Newtonian gravity.
They represent hair on the surface of the black hole, cre-
ated by the mere presence of outside matter. Geroch’s
field multipoles, on the other hand, are the hair that a
distant observer sees.
But unlike Newtonian gravity, general relativity is gov-

erned by equations that are highly nonlinear. As a result,
the gravitational field at infinity is more than the sum
of the field generated by the individual parts. Instead,
this field includes contributions from the black hole and
the matter rings, plus a third contribution from the very
gravitational field they create. So far, theorists have not
been able to cleanly disentangle the three. As a result,
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FIG. 1: According to the “no-hair theorem” of general relativ-
ity, static and isolated black holes can be fully characterized
by just two numbers, the mass (M) and the angular momen-
tum (J). Norman Gürlebeck has now shown that, under cer-
tain assumptions, the no-hair theorem is still valid when the
black hole is not isolated but, for instance, surrounded by a
matter disk [2]. (APS/Alan Stonebraker)

no simple relation exists between the horizon moments
(the intrinsic black hole’s hair) and the field moments
(the hair seen by an external observer).

However, as Hermann Weyl pointed out almost a cen-
tury ago [6], a key simplification occurs if one assumes
that the entire system is not only static but also axisym-
metric, i.e., symmetric under rotations around the z axis.
In this case, one can bypass the nonlinearities of general
relativity thanks to a transformation that leads to an
equivalent system whose governing equations are linear.
In 2014, Gürlebeck [7] showed an important consequence
of this reformulation. If there is no matter in the immedi-
ate vicinity of the black hole horizon, the field multipoles
defined at infinity can be split cleanly into two parts: a
black hole contribution (given by an integral over a sur-
face just outside the horizon) and a matter contribution
(given by a volume integral over matter rings). This cru-
cially eliminates the third contribution to the field multi-
poles, the one from the gravitational field itself. In effect,
Weyl’s strategy leads to a “renormalization,” where this
contribution is absorbed into the first two. As a result,

the multipoles assigned to the black hole by this proce-
dure do not match the intrinsic, source multipoles that
characterize the horizon geometry; the intrinsic multi-
poles get “dressed.”
Gürlebeck ‘s new observation [2] builds on these results

to show that this dressing has a dramatic consequence.
It wipes out all the higher-order horizon multipoles from
the black hole contribution, leaving only the monopole.
Thus, even if the horizon is highly distorted by external
matter rings, in the Gürlebeck decomposition, the black
hole contributes only to the mass monopole and not to
any of the hair seen at infinity. As long as the entire
system is static and axisymmetric, hair seen by a distant
observer is entirely due to matter.
This result suggests interesting directions for future re-

search. On the theoretical side, the challenge is to under-
stand the physics behind this mathematical derivation.
How does the effective linearity, induced by axisymme-
try, manage to hide all the horizon hair from a distant
observer? Another key question is whether the results
can be extended to the more general case of rotating
black holes. While the fact that Gürlebeck’s analysis
[7] was carried out using methods applicable to rotating
black holes is encouraging, it is far from obvious that
the no-hair theorem will again admit a simple general-
ization. The new extension of the theorem may also bear
consequences on observations, since it is now applicable
to more realistic astrophysics situations in which matter
rings surround a black hole. Since no-hair theorems do
not necessarily hold in alternative theories of gravity, ob-
servational tests can help constrain the alternatives and
test general relativity (see, e.g., Ref. [8]).

This research is published inPhysical Review Letters.
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