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Turning Down the Volume on
Granular Materials
A reformulation of the statistical mechanics of granular materials replaces the volume of the
material with a function related to its structure.

by Sean McNamara∗

W hen confronted with a system of many dis-
crete, interacting objects, physicists instinc-
tively reach for ideas from statistical mechan-
ics. Their response to granular materials, such

as sand, sugar, or flour, has not been an exception. But
these materials possess certain characteristics, such as being
inherently dissipative, that render key concepts of statis-
tical mechanics inapplicable, such as thermal equilibrium.
To use statistical mechanics, therefore, certain fundamen-
tal concepts need to be modified or redefined. But no one
knows how to do this in a way that yields a theory that is
clear, general, and powerful. There are, however, many pro-
posals. One of the most influential was first presented in
1989 by Sam Edwards and co-workers [1, 2] at Cambridge
University, who proposed a statistical mechanics of pow-
ders where the volume takes the role of the energy. Now
Raphael Blumenfeld—a colleague of Sam Edwards and also
at Cambridge (and other institutions)—and collaborators
have suggested reformulating Edwards’ proposal by replac-
ing the volume with another function related to the structure
of the powder [3]. It is too early to tell where this new pro-
posal will lead, but it does have promising features.

Edwards began by noting that there are many ways of as-
sembling a given set of sand grains into a sand pile. Some
of these ways yield a dense, compact pile with a relatively
small volume, while others lead to a larger volume. There
are also multiple ways of obtaining the same total volume.
Furthermore, the total volume can be thought of as the sum
of the volumes occupied by each grain. We can therefore
think of building a sand pile as dividing the total volume
into many pieces and then distributing these pieces among
the grains.

Statistical mechanics adopts the same perspective with re-
spect to the energy: a statistical mechanical system has a
total energy U that is distributed among the many micro-
scopic degrees of freedom that compose the system. This
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Figure 1: Blumenfeld and colleagues have developed a method to
calculate the volume of granular packings based on vectors
(yellow and red) [7]. The vectors connect the nearest contacts of
the grains (green), circulate clockwise, and encode the packing’s
configuration. Defining these vectors involves only one arbitrary
choice (clockwise or counterclockwise circulation). Dividing up the
volume of the packing involves many more arbitrary choices
because one has to decide how to cut up the empty space (blue)
between the grains. The volume depends only on the exterior
vectors (yellow). The authors now propose replacing the volume
with a quantity depending on all the vectors [3]. (Adapted from R.
Blumenfeld et al. [3])

parallel encouraged Edwards to push the analogy further
and define an entropy S(V), analogous to the usual S(U),
that is the logarithm of the number of ways of constructing
a pile (number of microstates) with the same total volume
V. He then followed the formalism of standard statistical
mechanics and defined a quantity, the compactivity X =
∂S/∂V, that has the role of the temperature T = ∂S/∂U
in the usual formalism. This quantity controls the prob-
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ability that a given microstate will be realized through a
Boltzmann-like factor e−V/λX , where λ is a constant that
plays the part of Boltzmann’s constant k in the Boltzmann
factor e−U/kT .

It would be quite alarming if this theory were to work in
a precise and detailed way because it involves several ex-
traordinary hypotheses. For example, implicit in the role of
the compactivity as a control variable is the canonical hy-
pothesis. This says that the probability of a given microstate
being realized is proportional to the Boltzmann-like factor.
But in the usual statistical mechanics, the Boltzmann fac-
tor appears when the canonical ensemble of microstates is
constructed. One considers a statistical mechanical system
exchanging energy with an enormous “heat bath” that im-
poses its temperature on the system. Thus the energy of the
system fluctuates even though the total energy of the sys-
tem plus the bath is strictly constant, and the probability of
any one system microstate is proportional to the Boltzmann
factor even though all allowed microstates of the system
plus the bath are equally probable. Although our eyes are
fixed on the system, the canonical ensemble is all about the
bath. Now, in the case of the proposed volume statistical
mechanics of a granular system, interaction with a “volume
bath” is replaced by stirring, pouring, or shaking the pow-
der. It would, however, be remarkable if these operations
were equivalent to placing the powder in contact with an
enormous sand pile with which it exchanges volume. For-
tunately, careful numerical simulations [4] have shown that
the canonical hypothesis is not verified in one common setup
where volume statistical mechanics would seem to apply.

Nevertheless, Edwards’ theory has been successful in that
it has raised many questions and suggested new ways of
interpreting data. In addition to provoking tests of its as-
sumptions [4], it has prompted experimentalists to develop
ways to measure compactivity [5], and the distribution of
volume occupied by grains has been scrutinized [6]. The
theory also raises the question of the elementary degrees of
freedom needed to specify a granular structure and calcu-
late its total volume. These would be the analogies of the
velocity components of the molecules in an ideal gas. The
usual approach is to use a variant of the Voronoi tessellation
that attributes the spaces between the grains to the nearest
grain. Then the grain volumes—the grain plus its neighbor-
ing empty space—are considered as elementary volumes.
The total volume of the packing is thus summed in the same
way that it is constructed: grain by grain.

For many years, Blumenfeld and co-workers have been
pursuing an alternative approach to calculating the volume
based on vectors connecting intragranular contacts [7, 8]
(see Fig. 1). These vectors can also be used to partition the
volume, and they encode structural information about the
packing, such as the average number of contacts. But as the
authors point out in their paper [3], considering these vec-
tors as fundamental degrees of freedom for calculating the

volume leads to a strange paradox: the volume does not de-
pend on most of these vectors. Indeed, it depends only on
those at the surface of the pile, since those in the interior can
be modified arbitrarily without affecting the total volume.
The researchers conclude that the volume is therefore not a
suitable quantity for granular statistical mechanics. Instead,
we should consider the sum of the squares of these vectors.

Mathematically, this new quantity, called the connectiv-
ity function, resembles many forms of energy, as it is a sum
of squares. This might give it many convenient properties,
facilitating analogies with other branches of physics. Fur-
thermore, its connection to the contacts means it encodes
information about how the packing supports loads, and it
could be related to the stored elastic energy or the stress
tensor (a quantity that describes the transmission of forces
within a material), both of which can be written as sums over
contacts. It could thus enlarge the scope of granular statis-
tical mechanics—so far confined to perfectly static piles—to
address the important questions of loading and destabiliza-
tion of granular materials.

That said, the connectivity has no obvious macroscopic
meaning, as the volume did. And this highlights a prob-
lem with the program of “granular statistical mechanics,”
namely that there is no “granular thermodynamics.” Before
they were statistical mechanical quantities, the internal en-
ergy, entropy, and temperature were macroscopic ones that
control the interactions between many very diverse systems
(even black holes have a temperature). The analogous quan-
tities in granular statistical mechanics are not so powerful. It
is difficult to imagine how two piles of grains would equi-
librate by exchanging volume or connectivity, for example.
It is clear that a satisfying statistical mechanical description
of granular materials has yet to be found, and new ideas are
needed. Such a description would indicate which grain-level
properties control large-scale behavior of granular flows and
packings and would unify many phenomena under a com-
mon framework.

This research is published in Physical Review Letters.
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