Synopsis

Protons in the Fast Lane

Physics 10, s48
A proposed graphene-based material could offer speedy transport of protons without the need for water.
A. Bagusetty/University of Pittsburgh; Rick Henkel

Membranes that conduct protons form the basis of fuel cells in hydrogen-powered cars and buses. But they only conduct well in the presence of water and at temperatures below about 80C—hotter than that, and they become dehydrated. Operating such membrane-based fuel cells at higher temperatures would come with several perks, including decreased carbon monoxide poisoning of the cells’ anodes. Karl Johnson from the University of Pittsburgh and colleagues now predict that if you add hydroxyl (OH) groups to a variant of graphene known as graphane, you’ll end up with a material that conducts protons fast, even in the absence of water and at increased temperatures.

Graphane (with two a’s) is graphene with a layer of hydrogen atoms bonded to each side of it. Using density-functional-theory calculations and molecular-dynamics simulations, Johnson and co-workers found that OH groups covalently attached to graphane can form a continuous hydrogen-bonded network. This network works like a bucket brigade, allowing protons to be handed over from one OH group to another, very fast and at a wide range of temperatures. This fast motion is in contrast with that of other materials that have been shown to conduct protons in the absence of water but lack an unbroken transport pathway, such as polymers with OH groups tacked on and ionic crystals. The researchers reckon that hydroxylated graphane could be produced with electron-beam-generated plasmas, which have been used to attach fluorine, hydrogen, and oxygen atoms to graphene.

This research is published in Physical Review Letters.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

Energy ResearchGrapheneMaterials Science

Related Articles

Sustainable Plastics Inspired by Nature
Interdisciplinary Physics

Sustainable Plastics Inspired by Nature

Plant-based plastics offer a sustainable alternative to traditional petrochemical plastics. Scientists and engineers are making the shift easier by fine-tuning the structure and function of these biomaterials while also developing better processing techniques. Read More »

The Rich Inner Life of the Hydrogen Chain
Condensed Matter Physics

The Rich Inner Life of the Hydrogen Chain

A one-dimensional chain of hydrogen atoms displays a wide variety of many-body effects—suggesting that the chain can be a useful model system for condensed-matter physics. Read More »

Harvesting Energy from Falling Droplets
Nanophysics

Harvesting Energy from Falling Droplets

A clever coupling of triboelectric charging and the hydrophobic effect leads to a remarkably efficient electrical nanogenerator. Read More »

More Articles