Synopsis

A Precise Probe of the Quark-Gluon Plasma

Physics 10, s93
Properties of the quark-gluon plasma can be inferred from measurements of jets and Z bosons simultaneously produced in the ion collisions that create the plasma.
CMS Collaboration/CERN

Immediately after the big bang, the Universe was filled with a hot, dense soup of quarks and gluons. Scientists can recreate this quark-gluon plasma (QGP) in particle accelerators by smashing heavy ions together. The collisions also produce partons (quark and gluons) that subsequently produce hadron jets. The energy lost by the partons as they travel through the QGP can be determined from measurements of the jets, revealing properties of the QGP. Now, the CMS Collaboration at the Large Hadron Collider has measured a jet produced in coincidence with so-called Z bosons—the carriers of the weak interaction. These combined Z-boson–jet measurements may characterize the QGP more precisely than conventional measurements probing the jets only.

Z bosons interact with the QGP much more weakly than the partons do, so they don’t lose energy as they travel through it. Thus the bosons’ energy is very close to the initial energy of the partons emerging from the ion collisions. And the difference between the boson and parton energies can reveal the QGP’s properties.

The team carried out two sets of experiments—collisions between heavier lead ions and collisions between lighter protons. They then compared the energies of the Z bosons—observed by detecting electrons or muons from the bosons’ decays—to those of the coincident jets. They found that the ratio of parton energy over Z boson energy in lead collisions is smaller than in proton collisions. The finding is not unexpected: lead collisions create a large QGP for the partons to travel through and interact with. However, the measurements more precisely characterize the energy lost by partons. Such information can be used to discriminate between models with different QGP parameters.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Particles and Fields

Related Articles

Kaon Decays Reevaluated
Particles and Fields

Kaon Decays Reevaluated

A rigorous calculation of a matter-antimatter asymmetry in kaon decays has twice the precision of a previous calculation, removing tension that had existed between theory and experiment. Read More »

Hints of Dark Bosons
Particles and Fields

Hints of Dark Bosons

A signal predicted for a type of dark matter appears in the spectra of ytterbium isotopes. Read More »

A Fine Positronium Puzzle
Atomic and Molecular Physics

A Fine Positronium Puzzle

A high-precision measurement of positronium’s fine structure delivers a puzzling discrepancy with predictions from quantum electrodynamics. Read More »

More Articles