Synopsis

Imaging Domains in Superfluid Helium

Physics 11, s59
An MRI imaging technique reveals a structure of chiral domains in a slab of superfluid helium-3.
J. Kasai et al., Phys. Rev. Lett. (2018)

Magnetic resonance imaging (MRI) is best known as a medical imaging tool, but it can also be applied to visualize microscopic features of quantum materials like superfluids and superconductors. A high-resolution MRI technique has now allowed Yutaka Sasaki of Kyoto University, Japan, and colleagues to uncover a previously hidden structure of chiral domains in superfluid helium-3 ( 3He). The result suggests that MRI might be used to visualize vortices and other topological structures in a variety of quantum materials.

When 3He is cooled below a few millikelvin, it becomes a superfluid—a fluid that can flow with zero viscosity. Previous experiments have led physicists to suspect that as 3He enters this phase, it breaks up into macroscopic domains. Each domain contains superfluid atoms with a common angular momentum, so that there is a handedness, or chirality associated with the domain. No one had yet seen these domains, but doing so would help physicists test their theoretical understanding of not only superfluidity but also related forms of superconductivity.

Sasaki’s team investigated a thin film of superfluid 3He at 2 mK with an MRI technique that they previously developed to acquire images of ultracold quantum condensates with 10 𝜇m spatial resolution. Analysis of the MRI data showed that the sample was divided into two or more millimeter-sized chiral domains separated by parallel walls, seen as dips in the MRI signal. The number and location of the domains changed each time the helium was cooled below the temperature at which it becomes a superfluid. This implies that the domains arise spontaneously as the superfluid forms, unlike domains in other materials, which are usually determined by internal impurities or external boundary conditions.

This research is published in Physical Review Letters.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Montgomery, Alabama.


Subject Areas

Superfluidity

Related Articles

Extending the Kibble-Zurek Mechanism
Superconductivity

Extending the Kibble-Zurek Mechanism

A theory first applied to phase transitions in the early Universe and then to defects in superfluid helium can now account for a wider variety of systems. Read More »

Cold Atoms Link a BEC, a Superfluid, and a Supersolid
Condensed Matter Physics

Cold Atoms Link a BEC, a Superfluid, and a Supersolid

Trapping a Bose-Einstein condensate (BEC) in an optical lattice, researchers confirm a 53-year-old theory that connects BECs to superfluids and supersolids. Read More »

Bigger Helium Nanodroplets without the Swirls
Superfluidity

Bigger Helium Nanodroplets without the Swirls

Researchers have created vortex-free helium nanodroplets that contain more helium atoms than previous droplets of this type, allowing the system to be used in a wider range of studies. Read More »

More Articles