Synopsis

Playing a Quantum “Oldie” on a Turntable

Physics 12, s103
A well-known quantum experiment is performed on a rotating lab table—offering a probe of quantum physics in a noninertial reference frame.
S. Restuccia/University of Glasgow

Are the laws of quantum physics the same in both accelerating and inertial reference frames? A new study seeks to answer this question by placing an entangled-photon experiment on a rotating table. The results confirm that, yes, the photons exhibit a quantum effect, called bunching, just as they do in a stationary system. No surprise there, but the authors argue that conducting a larger version of the experiment in orbit could also probe the overlap of quantum physics and gravity.

Currently, no theory satisfactorily unites quantum physics and general relativity—Einstein’s theory for gravity. However, the two are consistent under conditions of weak gravity or in modestly accelerating frames. Researchers have previously tested this consistency by observing, for example, quantum interference of massive particles in the presence of small gravitational gradients.

In their new experiment, Miles Padgett from the University of Glasgow, UK, and colleagues studied a quantum effect called Hong-Ou-Mandel (HOM) interference, in which entangled photons are sent to a pair of detectors via two paths: one photon goes clockwise through a coil of optical fiber; the other goes counterclockwise. When the photons reunite in a beam splitter, they bunch together and head toward one detector or the other. Nonentangled photon pairs have the option of splitting and setting off both detectors. The team rotated their experiment at up to 25 revolutions per minute. As expected, the rotation caused a small difference between each photon’s travel time, which affected the bunching signal at the detectors.

The authors propose that by repeating the experiment in orbit, with satellites relaying the photons in opposite directions around the Earth, the effect of gravity as well as rotation could be investigated.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Quantum PhysicsOptics

Related Articles

Another Way for Black Holes to Evaporate
Astrophysics

Another Way for Black Holes to Evaporate

The gravitational fields of black holes and other compact objects are strong enough that they might wrest massless particles out of the vacuum and into existence, causing the objects to decay. Read More »

Realizing the Einstein-Podolsky-Rosen Paradox for Atomic Clouds
Quantum Information

Realizing the Einstein-Podolsky-Rosen Paradox for Atomic Clouds

A new demonstration involving hundreds of entangled atoms tests Schrödinger’s interpretation of Einstein, Rosen, and Podolsky’s classic thought experiment. Read More »

“Shuttled” Ions Stay Quantum
Quantum Physics

“Shuttled” Ions Stay Quantum

Researchers move an individual Mg+ ion more than 100,000 times between different sites in a trapping array without dropping it or ruining its quantum coherence. Read More »

More Articles