A Better Production Line for Atom Arrays

Physics 16, s33
A new algorithm can organize hundreds of atoms into pristine patterns—including a honeycomb lattice, a fractal called a Sierpiński triangle, and a lion’s head.
W. Tian et al. [1]

Large, defect-free atom arrays are a promising platform for quantum computing and quantum simulation. But their production is often hindered by atom losses that occur during assembly. Now Huanqian Loh and her colleagues at the National University of Singapore have developed an algorithm that limits these losses by speeding up the manufacturing process [1]. They show that their algorithm can be used to make a wide range of pristine arrays containing hundreds of atoms.

Typically, an atom array is populated stochastically before the atoms are moved into the desired configuration using mobile light traps called optical tweezers. The more sequential movements that are required during this process, the greater the likelihood that the final configuration will include defects—empty lattice sites that should be occupied. The new algorithm suppresses such losses by limiting how many times the atoms need to be moved while avoiding atom collisions. Using this algorithm, the average number of moves scales as the square root of the target array size, unlike conventional methods in which this scaling is at best linear. As a result, at room temperature, the probability that a 225-atom array has zero defects is as high as 33%, which greatly improves on previous demonstrations.

Loh and her colleagues used their algorithm to produce large, defect-free arrays with shapes ranging from a honeycomb lattice to a lion’s head. They say that the algorithm could be applied to any target array geometry that has an underlying periodic structure and to most setups, including those that involve molecules or multiple species of atoms. Moreover, the team expects that the probability of an array having zero defects will be further improved in the future.

–Ryan Wilkinson

Ryan Wilkinson is a Corresponding Editor for Physics Magazine based in Durham, UK.


  1. W. Tian et al., “Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm,” Phys. Rev. Appl. 19, 034048 (2023).

Subject Areas

Atomic and Molecular PhysicsQuantum Physics

Related Articles

Midcircuit Operations in Atomic Arrays
Atomic and Molecular Physics

Midcircuit Operations in Atomic Arrays

Three research groups have exploited the nuclear spins of ytterbium-171 to manipulate qubits before they are read out—an approach that could lead to efficient error-correction schemes for trapped-atom computing platforms. Read More »

Uncertainty beyond the Uncertainty Principle
Quantum Physics

Uncertainty beyond the Uncertainty Principle

According to a new extension to an old theory, a particle’s position cannot be measured precisely even if its momentum is not measured simultaneously. Read More »

Seeking a Quantum Hall Effect for Light

Seeking a Quantum Hall Effect for Light

Light confined to an accelerating optical cavity could display a photonic counterpart of the electronic quantum Hall effect. Read More »

More Articles