Synopsis

A way to distinguish quantum noise

Physics 2, s109
Whether two quantum states can be distinguished over time provides a test to characterize noise from the environment.
Illustration: H-P. Breuer et al., Phys. Rev. Lett. (2009)

Although experiments are carefully designed to explore an ideal quantum state, in reality, they measure open quantum systems, meaning those that are exposed to an external environment. Understanding how coupling to the environment leads to noise is important in order to control and optimize features, such as coherence and entanglement, in a quantum system.

A standard approach to determining the dynamics of a quantum system is to solve a joint system-environment equation and then eliminate the degrees of freedom associated with the environment. With Markovian, or memoryless dynamics, noise will cause the coherence to decay exponentially. In contrast, non-Markovian dynamics exhibits more complex behavior, which can enhance or degrade system features. In Physical Review Letters, Heinz-Peter Breuer of the Universität Freiburg in Germany and Elsi-Mari Laine and Jyrki Piilo at the University of Turku in Finland present a new way to determine if an open quantum system follows non-Markovian dynamics. Their method is based on calculating how the distinguishability of two initial quantum states changes over time due to the environment. If the distinguishability increases at certain times, then information flow is exchanged between the system and the environment, indicating that the system is non-Markovian. If the distinguishability is always decreasing, then the system is Markovian.

This simple criterion does not require knowledge about the details of the environment. Instead, tomographic measurements of a system can quantify the extent to which a system exhibits non-Markovian behavior. – Sonja Grondalski


Subject Areas

Quantum Information

Related Articles

Trapped Ions Go the Distance
Atomic and Molecular Physics

Trapped Ions Go the Distance

Researchers have achieved long-distance entanglement between two calcium ions, each of which lies in a different building, showing that trapped ions could be used to create quantum networks. Read More »

Quantum Circuit Tackles “Diabolical” Photochemical Process
Chemical Physics

Quantum Circuit Tackles “Diabolical” Photochemical Process

A quantum device shows promise for simulating molecular dynamics in a difficult-to-model photochemical process that is relevant to vision. Read More »

Spin-Interaction Studies Take on a New Dimension
Condensed Matter Physics

Spin-Interaction Studies Take on a New Dimension

Studies of how a nitrogen-vacancy center’s spin interacts with a surrounding 2D layer of spins could lead to new platforms for quantum metrology and simulation. Read More »

More Articles