Synopsis

Casting a golden net

Physics 2, s20
Gold wire networks made with a simple tabletop method may provide an alternative to more expensive transparent conductors.

Indium tin oxide (ITO) is a popular material for making transparent electrodes for devices like solar cells and organic light-emitting diodes, but it is expensive and complicated to manufacture.

Ivan Vakarelski of Kyoto University in Japan and the Institute of Chemical and Engineering Sciences, in Singapore, and colleagues at Kyoto University and The University of Melbourne in Australia have developed a tabletop method for making a conducting, gold wire mesh that could be an alternative to ITO. They deposit a droplet of liquid containing gold nanoparticles on a two-dimensional monolayer of latex microspheres on a glass slide. As the liquid evaporates, it falls lower into the bed of spheres, ultimately forming a network of connected droplets on the substrate that dries into a gold wire mesh.

The drying process is difficult to explain with a simple model, but the group shows that the presence of a surfactant in the liquid, rather than the liquid’s surface tension alone, is the key to forming robust liquid bridges that don’t break during the drying process.

According to theoretical estimates, these gold mesh structures should be almost as conducting as ITO and they are just as transparent. Moreover, the fabrication method is flexible. For example, by evaporating the gold nanoparticles on double layers of the latex spheres, the group can engineer three-dimensional structures, and it is possible that in the future other materials—like carbon nanotubes—could substitute for the gold nanoparticles. – Jessica Thomas


Subject Areas

Soft Matter

Related Articles

Droplets Sliding Across a Stretched Surface
Soft Matter

Droplets Sliding Across a Stretched Surface

Experiments show that stretching the substrate changes the shape and dynamics of droplets, suggesting a new way to control fluid motion in microfluidic chips. Read More »

Shape-Shifting Proteins Follow Diffusion Rules
Soft Matter

Shape-Shifting Proteins Follow Diffusion Rules

How quickly a protein diffuses in a liquid depends directly on its radius, which changes as the protein’s conformation fluctuates. Read More »

Robot Foragers
Soft Matter

Robot Foragers

Using a swarm of puck-shaped robots, researchers simulate interactions between biological organisms and their environment. Read More »

More Articles