Synopsis

Scarred graphene

Physics 2, s76
Graphene is not just your everyday relativistic quantum playground; it may have ghostly chaotic features as well.
Illustration: L. Huang et al., Phys. Rev. Lett. (2009)

In the same way that scarring is a lingering reminder, quantum scarring harkens back to the classical world in a quantum scenario. Quantum scarring occurs in a quantum system that becomes chaotic in the classical limit and the “scars” are wave functions that gather around those classical paths that retrace themselves. This is perhaps counterintuitive, as one expects quantum wave functions to eschew the predictability of classical orbits.

Writing in Physical Review Letters, Liang Huang and colleagues at the Arizona State University, US, go a step further and ask if we should be able to see scarring in a relativistic quantum scenario, that is, one described by the Dirac, rather than the Schrödinger, equation. They consider this problem specifically in graphene, which has been called the prototypical bench-top relativistic quantum system. Due to its peculiar band structure, the charge carriers in graphene behave as relativistic particles with zero effective mass.

Huang et al. use a tight-binding calculation to study a confined geometry (a stadium-shaped quantum dot encompassing over 10,000 carbon atoms) both near and far from the relativistic limit, and under various confinement scenarios, and “see” the telltale imagery of scarring. This study should be tantalizing to researchers in both condensed matter transport as well as nonlinear dynamics. – Sami Mitra


Subject Areas

Nonlinear DynamicsGraphene

Related Articles

A Recipe for Universal Vaccines
Nonlinear Dynamics

A Recipe for Universal Vaccines

Researchers use nonequilibrium statistical physics methods to guide the design of vaccines that are effective against many strains of a virus, a holy grail of immunology. Read More »

Electron Chemical Potential Measured for Graphene
Graphene

Electron Chemical Potential Measured for Graphene

Researchers demonstrate a method for measuring the chemical potential in a many-electron system, providing a way to validate numerical calculations. Read More »

Teaching a Neural Network the Hard Way
Complex Systems

Teaching a Neural Network the Hard Way

A neural network can be made to produce more reliable predictions of nonlinear systems if it is created with conservation laws built in. Read More »

More Articles