Synopsis

Adapting to habitat

Physics 3, s172
Spatial variations can drive evolution in certain ecological habitats.

The complex relationship between ecology and evolution, sometimes ignored in biological models, is key in driving species adaptation in different environments. In a paper in Physical Review Letters, Rutger Hermsen and Terence Hwa, from the Center for Theoretical Biological Physics at the University of California, San Diego, propose a model that describes how evolution may be affected by the presence of spatial heterogeneities—location-dependent variations in the environment—in so-called source-sink ecologies, in which a species may only survive in a hostile environment (sink) after adaptation through a mutation. This model may mimic the emergence of insecticide resistance between plantations that use different types or amounts of insecticides, or bacteria migration between treated and untreated individuals.

One of the main findings in the paper is that, in general, the first adapted individual found in a hostile environment exhibits a mutation, which occurs prior to migration to the sink. This breakthrough may serve as a starting point for more realistic models where gradual environmental changes are allowed, and, in turn, to a better understanding of the development of infectious diseases or the emergence of antibiotic resistant pathogens. – Hernan D. Rozenfeld


Subject Areas

Soft MatterBiological PhysicsInterdisciplinary Physics

Related Articles

Eye Tracking Gets Complex
Interdisciplinary Physics

Eye Tracking Gets Complex

Two research teams have used eye-tracking methods to learn how students approach complex physics problems. Read More »

Droplets Sliding Across a Stretched Surface
Soft Matter

Droplets Sliding Across a Stretched Surface

Experiments show that stretching the substrate changes the shape and dynamics of droplets, suggesting a new way to control fluid motion in microfluidic chips. Read More »

Shape-Shifting Proteins Follow Diffusion Rules
Soft Matter

Shape-Shifting Proteins Follow Diffusion Rules

How quickly a protein diffuses in a liquid depends directly on its radius, which changes as the protein’s conformation fluctuates. Read More »

More Articles