Synopsis

Keep it local

Physics 3, s27
A new tool has been developed to measure the local London penetration depth in a superconductor.
Illustration: L. Luan et al., Phys. Rev. B (2010)

The typical distance that an applied magnetic field penetrates a superconductor—called the penetration depth, λ—is an important measure that can be directly related to the superfluid density. Absolute values of λ are notoriously difficult to ascertain. Most experiments therefore measure the difference, Δ λ = λ (T)-λ(0), which has the same temperature dependence as the superfluid density at low temperatures. A power-law dependence in Δ λ suggests there are nodes in the superconductivity gap, while an exponential dependence implies a fully open gap.

Recent measurements of Δ λ in iron pnictide superconductors of the Ba- 122 family show conflicting behavior: when the superconductor is doped with cobalt, there is a power-law dependence, suggesting nodes in the gap, but when doped with potassium, different experiments do not agree on the absence or presence of nodes in the gap. It turns out that to resolve this conflict, it may be necessary to measure the absolute value of λ.

In a Rapid Communication appearing in Physical Review B, Lan Luan and collaborators from Stanford University in the US have found a new way of measuring both the absolute value of the penetration depth and its spatial homogeneity using magnetic force microscopy (MFM) and SQUID susceptometry. Lan Luan et al. observe that for the Ba- 122 compound doped with cobalt, the superfluid density has a temperature dependence that is consistent with a fully gapped two-band model, similar to the potassium-doped material. Further, λ is found to be spatially homogeneous at the submicron scale, and absolute values of λ suggest that phase fluctuations are not as important for iron pnictides as for the underdoped cuprates. The ability of the new tool to obtain the absolute values of the penetration depth and to map its spatial variation down to the submicron scale is likely to be extremely useful. – Sarma Kancharla


Subject Areas

Superconductivity

Related Articles

Superconducting Vortices Made Without Magnetic Fields
Quantum Physics

Superconducting Vortices Made Without Magnetic Fields

A quantum phase of matter detected in an iron-based superconductor could host Majorana zero modes—quasiparticles that may serve as building blocks for future quantum computers. Read More »

Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet
Condensed Matter Physics

Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet

Condensed-matter physicist Ranga Dias and his colleagues reported on Tuesday the discovery of a room-temperature, near-ambient-pressure superconductor; Dias is also being accused of committing scientific misconduct, including data manipulation and plagiarism. Read More »

Enhanced Emission for Improved Electron Spectroscopy
Atomic and Molecular Physics

Enhanced Emission for Improved Electron Spectroscopy

Researchers have demonstrated a new electron field emitter with unprecedented brightness and spectral purity, promising a breakthrough in electron microscope spectroscopy. Read More »

More Articles