Synopsis

Slow Neutrons Are Dense

Physics 4, s138
Liquid helium-4 is integral in a source of slow-moving neutrons, with a five-fold increase in yield in density.
Adapted from O. Zimmer et al., Phys. Rev. Lett. (2011)

Some aspects of fundamental physics that are studied in high-energy accelerator labs can also be investigated within less-expensive neutron facilities. With a mass but no charge, neutrons are particularly useful probes as they lack atomic structure and are thus immune to, for example, van der Waals and Casimir forces.

Ultracold neutrons (UCN)—slow-moving neutrons that can be trapped in containment devices with the help of effects such as geometrical constraints and gravity—can be captured for hundreds of seconds, enabling precise studies of the neutron’s static and decay properties.

Traditional UCN sources, based on liquid deuterium, made densities of about 10 per cm3 available for experiments. In their paper in Physical Review Letters, Oliver Zimmer at the Institut Laue-Langevin, France, and colleagues detail progress with a technology they published in Physical Review Letters in 2007. The authors now report a new source that produces UCN density of about 55 per cm3—a fivefold increase. This source is based on superfluid helium- 4, which has no neutron absorption cross section or excitations below 1meV that can scatter the UCN. Advances in the storage time and density should prove useful to various user groups, particularly in their long-standing search for the neutron electric dipole moment. – Sami Mitra


Subject Areas

Particles and FieldsNuclear Physics

Related Articles

Close Passes Give Atoms Tiny Quantum Kicks  
Atomic and Molecular Physics

Close Passes Give Atoms Tiny Quantum Kicks  

A new technique in which atoms move slowly through a diffraction grating lets researchers measure the tiny Casimir-Polder interaction, a force that arises from quantum vacuum fluctuations. Read More »

Measuring the Neutron Lifetime with Record-Breaking Precision
Particles and Fields

Measuring the Neutron Lifetime with Record-Breaking Precision

An improved version of a “bottle” experiment lets researchers lower the uncertainty on this important parameter—but a tantalizing discrepancy remains. Read More »

Pinning Down the Fate of Fluorine
Astrophysics

Pinning Down the Fate of Fluorine

The first results from the Jinping Underground Nuclear Astrophysics particle accelerator refine a key reaction rate for the destruction of fluorine in stars. Read More »

More Articles