Synopsis

Even Flow

Physics 4, s191
An obstacle at the exit of a silo relieves local pressure, aiding the flow of small particles that might otherwise clog.
I. Zuriguel et al., Phys. Rev. Lett. (2011)

Fine particles, like flour or sugar, passing through a constriction (for example, a funnel) can clog for no apparent reason. Even when the particles are much smaller than the aperture, clogging occurs, as the particles, under pressure from the medium, form an arch at the outlet. This behavior is the same for grain discharging from a silo, people escaping a room, and traffic congestion.

Placing an obstacle just before the exit is known to inhibit the formation of transient clogs that increase the exit time; however, the exact way in which the obstacle decreases clogging is still an open question. Writing in Physical Review Letters, Iker Zuriguel and collaborators at the Universidad de Navarra, Spain, have performed experiments on a two-dimensional model of a silo with an obstacle at different distances from the silo exit. For all cases, except for when the obstacle is very close to the outlet, the clogging probability is smaller than without the obstacle, and by choosing the position of the obstacle carefully, the probability that a clog will form is reduced by 2 orders of magnitude. The clog probability is lowest when the distance of the obstacle to the outlet is about the same as the size of the outlet.

The authors suggest that the obstacle effectively reduces the pressure spots that lead to the formation of arc structures by the outlet. Although this study only treats two-dimensional silos, it should be applicable to three-dimensional flows as well. – Daniel Ucko


Subject Areas

Soft Matter

Related Articles

Active Matter Turns Pinwheels
Soft Matter

Active Matter Turns Pinwheels

The chaotic motion in a fluid of microscopic, actively moving rods can be harnessed to drive the rotation of a small propeller-like object. Read More »

Stretching without Buckling
Materials Science

Stretching without Buckling

Materials that stretch on demand often bend in undesired directions, but a new theoretical model can produce stress-free designs that change shape without buckling. Read More »

How Order Emerges in Bendy Beam Bunches
Mechanics

How Order Emerges in Bendy Beam Bunches

The behavior of a collection of squeezed elastic beams is determined by geometry, not by complex forces. Read More »

More Articles